Accès gratuit
Numéro
Radioprotection
Volume 53, Numéro 2, April-June 2018
Page(s) 145 - 148
DOI https://doi.org/10.1051/radiopro/2018008
Publié en ligne 16 mai 2018
  • Agosteo S, Cammi A, Garlati L, Lombardi C, Padovani E. 2005. Gamma dose from activation of internal shields in IRIS reactor. Radiat. Prot. Dosim. 115: 86–91. [CrossRef] [Google Scholar]
  • Akkurt I, El-Khayatt AM. 2013. Effective atomic number and electron density of marble concrete. J. Radioanal. Nucl. Chem. 295: 633–638. [CrossRef] [Google Scholar]
  • Bashter II. 1997. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24: 1389–1401. [CrossRef] [Google Scholar]
  • Bashter II, Makarious AS, El-Sayed Abdo AA. 1996. Investigation of hematite-serpentine and ilmenite-limonite concretes for reactor radiation shielding. Ann. Nucl. Energy 23: 65–71. [CrossRef] [Google Scholar]
  • Battistoni G, Muraro S, Sala PR, Cerutti F, Ferrari A, Roesler S, Fasso A, Ranft J. 2007. The FLUKA code: Description and benchmarking. AIP Conf. Proc. 896: 31–49. [CrossRef] [Google Scholar]
  • Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, K. Olsen K. 2010. XCOM: photon cross sections database, NIST standard reference database (XGAM). http://www.nist.gov/pml/data/xcom/index.cfm. [Google Scholar]
  • Beskrovnaia L, Florko B, Paraipan M, Sobolevsky N, Timoshenko G. 2008. Verification of Monte Carlo transport codes FLUKA, GEANT4 and SHIELD for radiation protection purposes at relativistic heavy ion accelerators. Nucl. Instr. Meth. Phys. Res. B 266: 4058–4060. [CrossRef] [Google Scholar]
  • Demir N, Akar UT, Popovici MA, Demirci ZN, Gurler O, Akkurt I. 2013. Investigation of mass attenuation coefficients of water, concrete and Bakelite at different energies using the FLUKA Monte Carlo code. J. Radioanal. Nucl. Chem. 298: 1303–1307. [CrossRef] [Google Scholar]
  • Ferrari A, Sala PR, Fasso A, Ranft J. 2005. FLUKA: A multi-particle transportcode, CERN-2005-010, INFNTC_05/11, SLAC-R-773. [Google Scholar]
  • Gerward L, Guilbert N, Jensen KB, Levring H. 2004. WinXcom-a program for calculating X-ray attenuation coefficients. J. Radiat. Phys. Chem. 71: 653–654. [CrossRef] [Google Scholar]
  • Korkut T, Karabulut A, Budak G, Korkut H. 2010. Investigation of fast neutron shielding characteristics depending on boron percentages of MgB2, NaBH4 and KBH4. J. Radioanal. Nucl. Chem. 286: 61–65. [CrossRef] [Google Scholar]
  • Korkut T, Korkut H, Karabulut A, Budak G. 2011. A new radiation shielding material: amethyst ore. Ann. Nucl. Energy 38: 56–59. [CrossRef] [Google Scholar]
  • Korkut T, Karabulut A, Budak G, Aygun B, Genel O, Hancerliogullari A. 2012. Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isot. 70: 341–345. [CrossRef] [PubMed] [Google Scholar]
  • Makarious S, Bashter II, Kany AM. 1988. Radiative capture gamma rays arising from iron fibre additions to ilmenite concrete shields. Ann. Nucl. Energy 15(10/11): 513–521. [CrossRef] [Google Scholar]
  • Makarious S, Bashter II, El-Sayed AA, M. Samir AA, Kansouh WA. 1996. On the utilization of heavy concrete for radiation shielding. Ann. Nucl. Energy 23: 195–206. [CrossRef] [Google Scholar]
  • Mark S, Khomchenko S, Shifrin M, Haviv Y, Schwartz JR, Orion I. 2007. TVF-NMCRCó A powerful program for writing and executing simulation inputs for the FLUKA Monte Carlo code system. Nucl. Instrum. Meth. Phys. Res. A 572: 929–934. [CrossRef] [Google Scholar]
  • Michael EW et al. 2013. Atomic weight of elements 2011 (IUPAC Technical Report). Pure Appl. Chem. 85(5): 1047–1078. [CrossRef] [Google Scholar]
  • Nariyama N, Konnai A, Ohnishi S, Odano N. 2003. Calculation of dosimeter response for in-human-phantom measurement to low-energy photons. In: Proceedings of the eleventh EGS4 users meeting in Japan, KEK proceedings 15: 53–58. [Google Scholar]
  • Ramirez-Lopez A, Soto-Cortes G, Gonzalez-Trejo J, Munoz-Negron D. 2011. Computational algorithms for simulating the grain structure formed on steel billets using cellular automaton and chaos theories. Int. J. Miner. Metall. Mater. 18: 24–34. [CrossRef] [Google Scholar]
  • Shirmardi SP, Shamsaei M, Naserpour M. 2013. Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data. Ann. Nucl. Energy 55: 288–291. [CrossRef] [Google Scholar]
  • Singh VP, Badiger NM. 2012. Comprehensive study of energy absorption and exposure buildup factor for concrete shielding in photon energy range 0.015-15 MeV upto 40 mfp penetration depth: dependency of density, chemical element, photon energy. Int. J. Nucl. Eng. Sci. Tech. 7: 75–99. [Google Scholar]
  • Singh VP, Badiger NM, Chanthima N, Kaewkhao J. 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 98: 14–21. [CrossRef] [Google Scholar]
  • Singh VP, Shirmardi SP, Medhat ME, Badiger NM. 2015. Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. J. Vacuum 119: 284–288. [CrossRef] [Google Scholar]
  • Wielopolski L, Song Z, Orion I, Hanson AL, G. Hendrey G. 2005. Basic considerations for Monte Carlo calculations in soil. Appl. Radiat. Isot. 62: 97–107. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.