Accès gratuit
Numéro
Radioprotection
Volume 46, Numéro 3, Juillet-Septembre 2011
Page(s) 317 - 330
Section Articles
DOI https://doi.org/10.1051/radiopro/2011108
Publié en ligne 15 septembre 2011
  • Absalom J.P., Young S.D., Crout N.M.J., Sanchez A., Wright S.M., Smolders E., Nisbet A.F., Gillett A.G. (2001) Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics, J. Environ. Rad. 52, 31-43. [CrossRef] [Google Scholar]
  • Bakker M.R., George E., Turpault M.P., Zhang J., Zeller B. (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions, Plant and Soil 266, 247-259. [CrossRef] [Google Scholar]
  • Balogh-Brunstad Z., Keller C.K., Gill R.A., Bormann B.T., Li C.Y. (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments, Biogeochemistry 88, 153-167. [CrossRef] [Google Scholar]
  • Barker W.W., Welch S.A., Banfield J.F. (1997) Geomicrobiology of silicate mineral weathering, Microbiological Society of America Reviews in Mineralogy 35, 391-428. [Google Scholar]
  • Basak B.B., Biswas D.R. (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols, Plant and Soil 317, 235-255. [CrossRef] [Google Scholar]
  • Boyle J.R., Voight G.K. (1973) Biological weathering of silicate minerals. Implications for tree nutrition and soil genesis, Plant and Soil 38, 191-201. [CrossRef] [Google Scholar]
  • Broadley M.R., Willey N.J. (1997) Differences in root uptake of radiocesium by 30 plant taxa, Environmental Pollution 95, 311-317. [CrossRef] [Google Scholar]
  • Buysse J., Van Den-Brande K., Merckx R. (1996) Genetic differences in the distribution of radiocesium in plants, Plant and Soil 178, 265-271. [CrossRef] [Google Scholar]
  • Calvaruso C., Turpault M.P., Frey-Klett P. (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis, Applied Environmental Microbiology 72, 1258-1266. [CrossRef] [Google Scholar]
  • Ciuffo L., Velasco H., Belli M., Sansone U. (2003) 137Cs soil-to-plant transfer for individual species in a semi-natural grass land, influence of potassium soil content, Radiation Research 44, 277-283. [CrossRef] [Google Scholar]
  • Frissel M.J., Deb D.L., Fathony M., Ngo N.T., Othman I., Robison W.L., Skarlou-Alexiou V., Topcuoglu S., Twining J.R., Uchida S., Wasserman M.A. (2002) Generic values for soil-to-plant transfer factors of radiocesium, J. Environ. Rad. 58, 113-128. [CrossRef] [Google Scholar]
  • Fuhrmann M., Lasat M., Ebbs S., Cornish J., Kochian L. (2003) Uptake and release of Cesium-137 by five plant species as influenced by soil amendments in field experiments, J. Environ. Quality 32 2272-2279. [CrossRef] [Google Scholar]
  • Gomez K.A., Gomez A.A. (1984) Statistical Procedures for Agricultural Research. John Wiley and Sons Inc., Singapore, p. 680. [Google Scholar]
  • IAEA (2010) Handbook of parameter values for the prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. IAEA Technical Reports Series No. 472. Jackson M.L. (1973) Soil Chemical Analysis. Prentice Hall, New Delhi. [Google Scholar]
  • Jackson M.L. (1976) Soil Chemical Analysis – Advance Course. Madison, USA: Department of Soil Science, University of Wisconsin. [Google Scholar]
  • Keum D.K., Lee H., Kanga H.S., Jun I., Choi Y.H., Lee C.W. (2007) Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties, J. Environ. Rad. 92, 1-15. [CrossRef] [Google Scholar]
  • Kumar A., Singhal R.K., Preetha J., Rupali K., Narayanan U., Suresh S., Mishra M.K., Ranade A.K. (2008) Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232 U-238 in perennial plants, Water Air and Soil Pollution 192, 293-302. [CrossRef] [Google Scholar]
  • Lasat M.M., Novell W.A., Kochian I.V. (1997) Potential for phytoextraction of 137Cs from a contaminated soil, Plant and Soil 195, 99-106. [CrossRef] [Google Scholar]
  • Lembrechts J. (1993) A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocaesium, Sci. Total Environ. 137, 81-98. [CrossRef] [Google Scholar]
  • Manjaiah K.M., Sachdev P., Sachdev M.S. (2003) Radiocesium transfer from soil to plants: A review, Journal of Nuclear Agriculture and Biology 32, 129-157. [Google Scholar]
  • Manoj Kumar, Ghosh S.K., Manjaiah K.M. (2002) Components of naturally occurring organo-mineral complexes in some Inceptisols of India, Clay Research 21, 59-74. [Google Scholar]
  • Massas I., Skarlou V., Haidouti C., Giannakopoulou F. (2010) 134Cs uptake by four plant species and Cs-K relations in the soil-plant system as affected by Ca (OH)2 application to an acid soil, J. Environ. Rad. 101, 250-257. [CrossRef] [Google Scholar]
  • Monira B., Ullah S.M., Mollah A.S., Chowdhury N. (2005) 137Cs-uptake into wheat (Triticum vulgare) plants from five representative soils of Bangladesh, Environmental Monitoring and Assessment 104, 59-69. [CrossRef] [Google Scholar]
  • Nisbet A.F., Konoplev A.V., Shaw G., Lembrechts J.F., Merckx R., Smolders E., Vandecasteele C.M., Lonsjo H., Carini F., Burton O. (1993) Application of fertilizers and ameliorants to reduce soil to plant transfer of radiocesium and radiostrontium in the medium to long term-A summary, Sci. Total Environ. 137, 173-182. [CrossRef] [Google Scholar]
  • Paasikallio A. (1999) Effect of biotite, zeolite, heavy clay, bentonite and apatite on the uptake of radiocesium by grass from peat soil, Plant and Soil 206, 213-222. [CrossRef] [Google Scholar]
  • Rosen K. (1991) Effects of potassium fertilization on cesium transfer to grass, barley and vegetables after Chernobyl. In: The Chernobyl Fallout in Sweden. Swedish Radiation Protection Institute. Artprint, Stockholm (L. Moberg, Ed.). [Google Scholar]
  • Sachdev P., Sachdev M.S., Manjaiah K.M. (2006) The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants. In: Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides From Soil to Reference Plants, IAEA TECDOC-1497 (IAEA Vienna, Austria) pp. 89-100. [Google Scholar]
  • Sandeep S., Manjaiah K.M. (2008) Transfer factors of 134Cs to crops from Typic Haplustept under tropical region as influenced by potassium application, J. Environ. Rad. 99, 349-358. [CrossRef] [Google Scholar]
  • Sandeep S., Manjaiah K.M., Sachdev P., Sachdev M.S. (2009) Effect of nitrogen, potassium and humic acid on 134Cs transfer factors to wheat from tropical soils in Neubauer growth units, Environmental Monitoring and Assessment 149, 43-52. [CrossRef] [Google Scholar]
  • Schuller P., Bunzl K., Voigt G., Krarup A. (2004) Seasonal variations of the radiocesium transfer soil-to Swiss chard in allophonic soils from the lake region, Chile, J. Environ. Rad. 78, 21-33. [CrossRef] [Google Scholar]
  • Snyder J.D., Trofymow J.A. (1984) A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in pot samples, Communications in Soil Science and Plant analysis 15, 587-597. [CrossRef] [Google Scholar]
  • Song S.K., Huang P.M. (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids, Soil Science Society American Journal 52, 383-390. [CrossRef] [Google Scholar]
  • Sreenivasa Chari M. (2010) Sorption - desorption of radiocesium on soil clays and use of waste mica in reducing 134Cs transfer from soils to crops. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India. [Google Scholar]
  • Strandberg M., Johansson M. (1998) 134Cs in heather seed plants grown with and without mycorrhiza, J. Environ. Rad. 40, 175-184. [CrossRef] [Google Scholar]
  • Tang S., Chen Z., Li H., Zheng J. (2003) Uptake of 134Cs in the shoots of Amaranthus tricolor and Amaranthus cruentus, Environnemental Pollution 125, 305-312. [CrossRef] [Google Scholar]
  • Thiry Y., Gommers A., Iserentant A., Delvaux B. (2005) Rhizospheric mobilization and plant uptake of radiocesium from weathered micas: II. Influence of mineral alterability, J. Environ. Quality 34, 2174-2180. [CrossRef] [Google Scholar]
  • van Scholl L., Kuyper T.W., Smits M.M., Landeweert R., Hoffland E., van Breemen N. (2008) Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles, Plant and Soil 303, 35-47. [CrossRef] [Google Scholar]
  • Walkley A., Black I.A. (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Science 37, 29-37. [CrossRef] [Google Scholar]
  • Wasserman M.A., Bartoly F., Viana A.G., Silva M.M., Rochedo E.R.R., Perez D.V., Conti C.C. (2008) Soil to plant transfer of 137Cs and 60Co in Ferralsol, Nitisol and Acrisol, J. Environ. Rad. 99, 546-553. [CrossRef] [Google Scholar]
  • White P.J., Swarup K., Escobar-Gutierrez A.J., Bowen H.C., Willey N.J., Broadley R. (2003) Selecting plants to minimise radiocesium in the food chain, Plant and Soil 249, 177-186. [CrossRef] [Google Scholar]
  • Willey N.J., Tang S., Watt N.R. (2005) Predicting inter-taxa differences in plant uptake of cesium-134/137, J. Environ. Quality 34, 1478-1489. [CrossRef] [Google Scholar]
  • Wood L.K., De Turk E.E. (1941) The absorption of potassium in soils in non-exchangeable from, Soil Science Society of America Proceedings 5, 152-161. [CrossRef] [Google Scholar]
  • Zachara J.M., Smith S.C., Liu C., McKinley J.P., Serne R.J., Gassman P.L. (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA, Geochim. Cosmochim. Acta 66, 193-211. [CrossRef] [Google Scholar]
  • Zhu Y.G., Shaw G., Nisbet A.F., Wilkins B.T. (2002) Effect of external potassium supply and plant age on the uptake of radiocaesium (137Cs) by broad bean (Vicia faba): Interpretation of results from a large-scale hydroponic study, Environmental and Experimental Botany 47, 173-187. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.