Accès gratuit
Numéro
Radioprotection
Volume 45, Numéro 5, 2010
Enhancing nuclear and radiological emergency management and rehabilitation:
Key Results of the EURANOS European Project
Page(s) S77 - S84
Section Articles
DOI https://doi.org/10.1051/radiopro/2010017
Publié en ligne 16 septembre 2010
  • Andronopoulos S., Bartzis J.G. (2009a) Model description of the RODOS Meteorological Pre-Processor, Report RODOS(RA2)-TN(09)02, available in http://www.rodos.fzk.de/rodos.html. [Google Scholar]
  • Andronopoulos S., Bartzis J.G. (2009b) Report on performance tests of the mass-consistent wind-field model, Report EURANOS(CAT2)-TN(09)04. [Google Scholar]
  • Andronopoulos S., Davakis E., Bartzis J.G. (2009) RODOS-DIPCOT Model Description and Evaluation, Report RODOS(RA2)-TN(09)01, available in http://www.rodos.fzk.de/rodos.html. [Google Scholar]
  • Gryning S.E., Holstag A.A.M., Irwin J.S., Sivertsen B. (1987) Applied dispersion modelling based on meteorological scaling parameters, Atmos. Environ. 21, 79–89. [CrossRef] [Google Scholar]
  • Hanna S.R. (1982) Atmospheric turbulence and air pollution modelling. In: Atmospheric Turbulence and Air Pollution Modelling (Nieuwstadt F.M.T., van Dop H., Ed.) pp. 275-310, D. Reidel, Dordrecht, Holland. [Google Scholar]
  • Hanna S.R., Chang J.C. (1993) Hybrid plume dispersion model (HPDM) improvements and testing at three field sites, Atmos. Environ. 27A, 1591-1508. [Google Scholar]
  • Holtslag A.A.M., Moeng C.H. (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci. 48, 1690-1998. [CrossRef] [Google Scholar]
  • IAEA (1980) Atmospheric Dispersion in Nuclear Power Plant Siting. International Atomic Energy Agency, Safety Series, 50-SG-S3. [Google Scholar]
  • Kitada T., Kaki A., Ueda H., Peters L.K. (1983) Estimation of vertical air motion from limited horizontal wind data-a numerical experiment, Atmos. Environ. 17, 2181-2192. [CrossRef] [Google Scholar]
  • Kovalets I. (2006) RODOS System Meteorological and Atmospheric Dispersion Module functionality enhancement by introduction of numerically efficient algorithms. Final Report of the “RODOS / METADM – enhance” Project Contract Nº 516492 (FI6R). [Google Scholar]
  • Ratto C.F., Festa R., Romeo C., Frumento O.A., Galluzzi M. (1994) Mass-consistent models for wind fields over complex terrain: The state of the art, Environ. Softw. 9, 247-268. [CrossRef] [Google Scholar]
  • Sasaki Y. (1958) An objective analysis based on the variational method, J. Met. Soc. Japan 36, 77-88. [Google Scholar]
  • Sasaki Y. (1970) Some basic formalism in numerical variational analysis, Mont. Weather Rev. 98, 875-883. [Google Scholar]
  • Seibert P., Beyrich F., Gryning S.-E., Joffre S., Rasmussen A., Tercier Ph. (1997) Mixing Height Determination for Dispersion Modelling, Report of Working Group 2. In: COST Action 710 – Final Report, EUR 18195 EN. European Commission. [Google Scholar]
  • Taylor G.I. (1921) Diffusion by continuous movements, Proc. Lond. Math. Soc. 20, 169-211. [Google Scholar]
  • Thomson D.J. (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech. 180, 529-556. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.