Accès gratuit
Numéro
Radioprotection
Volume 44, Numéro 1, Janvier-Mars 2009
Page(s) 55 - 68
DOI https://doi.org/10.1051/radiopro/2008051
Publié en ligne 4 mars 2009
  • Ahmad N. et al. (1997) Indoor radon levels and natural radioactivity in Jordanian soil, Radiat. Prot. Dosim. 71, 231-233. [Google Scholar]
  • Al-Jundi J. (2002) Population doses from terrestrial gamma exposure in areas near to old phosphate mine, Russaifa, Jordan, Radiat. Meas. 35, 23-28. [CrossRef] [Google Scholar]
  • Aslani A.A.M. et al. (2003) Activity concentration of caesium-137 in agricultural soils, J. Environ. Radioact. 65, 131-145. [CrossRef] [PubMed] [Google Scholar]
  • Baeza A. et al. (1992) Natural radioactivity in soils in the province of Caceres (Spain), Radiat. Prot. Dosim. 45 (1/4), 261-263. [Google Scholar]
  • Bahari I. et al. (2007) Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry, J. Environ. Radioact. 95(2-3), 161-170. [Google Scholar]
  • Bellia S. et al. (1997) Natural radioactivity in a volcanic island Ustica, Southern Italy, Appl. Radiat. Isot. 48, 287-293. [CrossRef] [Google Scholar]
  • Beretka J., Mathew J. (1985) Natural radioactivity of Australian building materials. Industrial wastes and by-products, Health Phys. 48, 87-95. [CrossRef] [PubMed] [Google Scholar]
  • Chowdhury M.I. et al. (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagaong, Bangladesh and evaluation of the radiation hazard, Appl. Rad. Isot. 51, 747-755. [CrossRef] [Google Scholar]
  • Dikshitulu G.R. et al. (1997) Uranium mineralization at Mouldih, Singhbhum shear zone, Bihar – An ore petrological study, J. At. Min. Sci. 5, 81-86. [Google Scholar]
  • Dragoviæ S. et al. (2006) Classification of soil samples according to geographic origin using gamma-ray spectrometry and principal component analysis, J. Environ. Radioact. 89, 150-158. [CrossRef] [PubMed] [Google Scholar]
  • El-Arabi A.M. (2005) Natural radioactivity in sand used in thermal therapy at the Red Sea Coast, J. Environ. Radioact. 81, 11-19. [CrossRef] [PubMed] [Google Scholar]
  • El-Dine N.W. (2008) Study of natural radioactivity and the state of radioactive disequilibrium in U-series for rock samples, North Eastern Desert, Egypt, Appl. Radiat. Isot. 66, 80-85. [CrossRef] [PubMed] [Google Scholar]
  • Faure G. (1986) Principles of Isotope Geology, 2nd Ed. Wiley, New York. [Google Scholar]
  • Fernandez J.C. et al. (1992) Natural radiation in Tenerife (Canary Islands), Radiat. Prot. Dosim. 45(1/4), 545-548. [Google Scholar]
  • Florou H. et al. (1992) Gamma radiation measurements and dose rates in the coastal areas of a volcanic island, Aegean Sea, Greece, Radiat. Prot. Dosim. 45(1/4), 277-279. [Google Scholar]
  • Godoy et al. (1998) 137Cs, 226, 228Ra, 210Pb and 40K Concentrations in Antarctic Soil, Sediment and Selected Moss and Lichen Samples, J. Environ. Radioact. 41(1), 33-45. [Google Scholar]
  • Hamarneh I.A. et al. (2003) Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu radionuclides in Jordanian soil samples, J. Environ. Radioact. 67, 53-67. [CrossRef] [PubMed] [Google Scholar]
  • Higgy R.H. (2002) Radioactivity in sediment and sea-water used in climatotherapy in Safaga, Red Sea, Egypt. In: Sixth Radiation Phys. Conf. Arab Journal of Nuclear Science and Applications, 581-587. [Google Scholar]
  • Karahan G. et al. (2000) Assessment of gamma dose rates around Istanbul, J. Environ. Radioact. 47, 213-221. [CrossRef] [Google Scholar]
  • Kumar A. et al. (2007) A non-parametric statistical analysis in the measurement of outdoor gamma exposure to the residents around Trombay, Radiat. Prot. Dosim. 124(4), 378-384. [Google Scholar]
  • La Brecque et al. (1992) The preliminary results of the measurements of environmental levels of 40K and 137Cs in Venezuela, Nucl. Instr. Meth. A 312, 217-222. [CrossRef] [Google Scholar]
  • Lavi N. et al. (2006) Monitoring and surveillance of radio-cesium in cultivated soils and foodstuff samples in Israel 18 years after the Chernobyl disaster, Radiat. Meas. 46, 78-83. [CrossRef] [Google Scholar]
  • Martinez-Aguirre A. et al. (1997) Radioactivity impact of phosphate ore processing in a wet marshland in southwestern Spain, J. Environ. Radioact. 34, 45-57. [CrossRef] [Google Scholar]
  • Ménager M.T. et al. (1993) Migration of uranium from uranium-mineralised fractures into the rock matrix in granite: implications for radionuclide transport around a radioactive waste repository. In: Fourth Internatoinal Conference of Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere (Migration 1993), Charleston, USA, 12-17 December 1993, Radiochim. Acta 66/67, 47-83. [Google Scholar]
  • Mohanty A.K. et al. (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India, Appl. Radiat. Isot. 38(2), 153-165. [Google Scholar]
  • Nada A. (2003) Evaluation of natural radionuclides at Um-Greifat area, eastern desert of Egypt. Appl. Radiat. Isot. 58(2), 275-280. [Google Scholar]
  • Nageswara M.V. et al. (1996) Natural radioactivity in soil and radiation levels of Rajasthan, Radiat. Prot. Dosim. 63(3), 631-642. [Google Scholar]
  • Nambi K.S.V. et al. (1987) Country-wide Environmental Radiation Monitoring using thermoluminescent Dosimeters, Radiat. Prot. Dosim. 18, 31-38. [Google Scholar]
  • Porêba G. et al. (2003) Concentration and vertical distribution of 137Cs in agricultural and undisturbed soils from Chechlo and Czarnocin areas, Geochronometria 22, 67-72. [Google Scholar]
  • Probonas M. et al. (1993) The exposure of the Greek population to national gamma radiation of terrestrial origin, Radiat. Protect. Dosim. 46(2), 123-126. [Google Scholar]
  • Sankaran A.V. et al. (1986) U, Th and K Distrbutions Inferred From Regional Geology and the Terrestrial Radiation Profiles in India, BARC Report. [Google Scholar]
  • Selvasekarapandian S. et al. (1999) Gamma radiation dose from radionuclides in soil samples of Udagamandalam (OOTY) in India, Radiat. Prot. Dosim. 82(3), 225-228. [Google Scholar]
  • Selvasekarapandian S. et al. (2000) Natural radionuclide distribution in soils of Gudalore, India, Appl. Radiat. Isot. 52(2), 299-306. [Google Scholar]
  • Selvasekarapandian S. (2001) Background radiation survey of the Nilgiris Biosphere of Peninsular India, Final report of the DAE/BRNS sponsored project, 1995-1999, Coimbatore, April, 2001. [Google Scholar]
  • Shanbhag A.A. et al. (2005) Natural radioactivity content in beach sands of Ratnagiri coast, Maharashtra, Environm. Geochem. 8(1-2), 304-308. [Google Scholar]
  • Steinhausler S. et al. (1992) Radiometric survey in Namibia, Radiat. Prot. Dosim. 45(1/4), 553–555. [Google Scholar]
  • Sunta C.M. et al. (1981) Analysis of dosimetry data of high natural radioactivity areas of SW coast of India. In: Vohra, K.G. (Ed.), Proc. Natural Radiation Environment, New Delhi, 35-42. [Google Scholar]
  • Tzortzis M. et al. (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus, J. Environ. Radioact. 77, 325-338. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR (1993) Sources, effects and risks of ionizing radiation. Report to the General Assembly, with Scientific Annexes. UN, New York. [Google Scholar]
  • UNSCEAR (2000) Sources and Effects of Ionising Radiation, United Nations. Report to General Assembly with Scientific Annexes. United Nations, New York. [Google Scholar]
  • Yu-Ming L. et al. (1987) Measurement of terrestrial gamma radiation in Taiwan, Republic of China, Health Phys. 52, 805-811. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.