Accès gratuit
Volume 43, Numéro 1, Janvier-Mars 2008
Page(s) 13 - 22
Publié en ligne 13 mars 2008
  • Cheng Y.S., Dahl A.R., Jow H.N. (1997) Dissolution of Metal Tritides in a Simulated Lung Fluid, Health Phys. 73, 633-638. [CrossRef] [PubMed] [Google Scholar]
  • Cheng Y.S., Snipes M.B., Wang Y.S., Jow H.N. (1999) Biokinetics and dosimetry of titanium tritide particles in the lung, Health Phys. 76, 120-128. [CrossRef] [PubMed] [Google Scholar]
  • Cheng Y.S., Zhou Y. (2002) Dose estimate of inhaled hafnium tritide using the ICRP 66 lung Model, Health Phys. 82, 817-824. [CrossRef] [PubMed] [Google Scholar]
  • Di Pace L. (2003) Literature study on the radiological hazards of tritiated dust and flakes. Final report, JW3-FT-5.12, 1 december 2003. [Google Scholar]
  • Di Pace L., Patel B. (2005) Factors affecting the inhalation dose from tritiated dust and flakes, Fusion Engineering and Design, Proceedings of the 23rd Symposium of Fusion Technology – SOFT 23, Volumes 75-79, November 2005, pp. 1181-1186. [Google Scholar]
  • GSSR (2001) Generic Site Safety Report, Volume VI, Occupational Safety, ITER IDoMS No. G 84 RI 5 01-07-12 R 1.0, July 2001. [Google Scholar]
  • GSSR (2004) Generic Site Safety Report, Volume IV, Normal Operation, ITER IDoMS No. N 84 RI 1 R 0.2, July 2004. [Google Scholar]
  • GSSR (2005) Generic Site Safety Report, Volume IV, Normal Operation, ITER IDoMS No. N 84 RI 1 01-06-27 R1, February 2005. [Google Scholar]
  • Hodgson S.A., Scott J.E., Hodgson A. (2006) In vitro dissolution of tritium loaded particles from the JET fusion machine, RPD-DAR-02-2006, Health Protection Agency, UK, June 2006. [Google Scholar]
  • How J. (Ed.) (2007) Project Integration Document (PID), ITER_D_2234RH v 3.0, January 2007. [Google Scholar]
  • ICRP Publication 66 (1994) International Commission on Radiological Protection, Human Respiratory Tract Model for Radiological Protection, Ann. ICRP 24 (1/3). [Google Scholar]
  • ICRP Publication 68 (1995) International Commission on Radiological Protection, Doses coefficients for intakes of radionuclides by workers, Ann. ICRP 24 (4). [Google Scholar]
  • ICRP Publication 78 (1998) International Commission on Radiological Protection, Individual monitoring for individual exposure of workers, Ann. ICRP 27 (3-7). [Google Scholar]
  • Kropf R.F., Wang Y.S., Cheng Y.S. (1998) Self-absorption of tritium betas in metal tritide particles, Health Phys. 75, 398-404. [CrossRef] [PubMed] [Google Scholar]
  • Patel B., Letellier E. (2006) Experimental determination of parameters relevant to radiological safety of JET tritiated dust, Draft report, JW3-FT-5.12, 31 May 2006. [Google Scholar]
  • Piet S.J., Federici G. (1996) ITER White Paper on Integrated Picture of In-Vessel Tritium and Dust, ITER IDoMS S 81 RI 13 96-06-28 W 1.4, 21 July 1996. [Google Scholar]
  • Richardson R.B., Hong A. (2001) Dose to lung from inhaled tritiated particles, Health Phys. 81, 313-324. [CrossRef] [PubMed] [Google Scholar]
  • Topilski L. (2007) Safety Analysis Data List, document ITER_D_24LSAE v. 2.0, 2007. [Google Scholar]
  • Zhou Y., Cheng Y.S. (2003) Dose assessment for inhaling hafnium particles based on laboratory rats study, Health Phys. 84, 469-476. [CrossRef] [PubMed] [Google Scholar]
  • Zhou Y., Cheng Y.S. (2004) Dosimetry of Metal Tritide Particles as Evaluated by the ICRP 66 Model and a Biokinetic Model From Laboratory Rats, Health Phys. 86, 155-160. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.