Free Access
Issue |
Radioprotection
Volume 57, Number 2, April-June 2022
|
|
---|---|---|
Page(s) | 157 - 164 | |
DOI | https://doi.org/10.1051/radiopro/2022004 | |
Published online | 10 February 2022 |
- Ancelet S, Belloni M, Laurent O, Guihenneuc C. 2021. Estimation d’un risqué de cancer radio-induit en situation de co-expositions professionnelles : cas des mineurs d’uranium français. In: SFRP e-Congress live 18 June 2021. [Google Scholar]
- Anichini G, Geoffroy B. 2021. L’intelligence artificielle à l’épreuve des savoirs tacites. Analyse des pratiques d’utilisation d’un outil d’aide à la détection en radiologie. Sci. Soc. Santé 39(2): 43–69. https://doi.org/10.1684/sss.2021.0200. [Google Scholar]
- AP–HP. 2019. Les hôpitaux Avicenne et Cochin ont testé, un dispositif d’aide à la détection précoce du cancer colorectal basé sur l’intelligence artificielle. AP–HP Press Service. [Google Scholar]
- Barragan-Montero AM, et al. 2021. Deep learning dose prediction for IMRT of oesophageal cancer: the effect of data quality and quantity on model performance. Phys. Med. 83: 52–63. https://doi.org/10.1016/j.ejmp.2021.02.026. [CrossRef] [Google Scholar]
- Bourguignon M, Bérard P, Bertho JM, Farah J, Mercat C. 2017. Radioprotection : quel avenir ? Radioprotection 52(1): 13–20. https://doi.org/10.1051/radiopro/2017007. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Boina D. 2019. SIANCE et avenir…, Impact Eco 1. Syndicat national des ingénieurs de l’industrie des Mines, pp. 29–30. [Google Scholar]
- Chojnacki E. 2021. Datascience : apprentissage automatique. In: Métrologie et Capteurs CNRS-IRSN Congress, 25 June 2021. [Google Scholar]
- CHU-BDX. 2019. Le CHU de Bordeaux mise sur l’intelligence artificielle en s’alliant à la start-up. Synapse Medicine. Press releases. [Google Scholar]
- Darley G, Damon C, Dazat A, Lavoine J, Touzani Y, Trompier F. 2020. Étalonnage des capteurs de mesures de rayonnement cosmique en avion. In: SCIDONI workshop. IRSN. [Google Scholar]
- Deutsch E. 2021. Cancer : comment l’intelligence artificielle peut aider à mieux prendre en charge les malades. Podcast Sans Rendez Vous, Europe 1, 21 March 2021. https://www.europe1.fr/sante/cancer-comment-lintelligence-artificielle-aide-a-mieux-prendre-en-charge-les-malades-4028994. [Google Scholar]
- Duong VH, Ly HB, Trinh DH, Nguyen TS, Pham BT. 2021. Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Environ. Pollut. 262: 116973. https://doi.org/10.1016/j.envpol.2021.116973. [CrossRef] [Google Scholar]
- EFOMP. 2021, Focus issue: artificial intelligence in medical physics. Phys. Med. 83: 287–291. https://doi.org/10.1016/j.ejmp.2021.05.008. [CrossRef] [Google Scholar]
- ENS. 2018. The early days of artificial intelligence in France. In: Data Analytic Post (R. Azencott, M. Salomon, Eds.). https://ens-paris-saclay.fr/en/actualite/early-days-artificial-intelligence-france. [Google Scholar]
- EU-LEX. 2021. Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain Union legislative acts, SWD(2021) 85 final. Brussels: European Commission. [Google Scholar]
- Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. 2008. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. Fed. Am. Soc. Exp. Biol. J. 22(2): 338–342. https://doi.org/10.1096/fj.07-9492LSF. [Google Scholar]
- FNMR. 2018. L’intelligence artificielle: rêve ou cauchemar du radiologue? In: Proceedings of the Congress, 2 June 2018. Fédération nationale des médecins radiologues. ISBN 978-2-9558316-1-8. [Google Scholar]
- Glangetas A, et al. 2021. Deep learning diagnostic and risk-stratification pattern detection for COVID-19 in digital lung auscultations: clinical protocol for a case–control and prospective cohort study, 2008. BMC Pulm. Med. 21(1): 103. https://doi.org/10.1186/s12890-021-01467-w. [CrossRef] [Google Scholar]
- French S, Haywood S, Oughton DH, Turcanu C. 2020. Different types of uncertainty in nuclear emergency management. Radioprotection 55(HS1): 175–180. https://doi.org/10.1051/radiopro/2020029. [Google Scholar]
- Gomez-Fernandez M, Higley K, Tokuhiro A, Welter K, Wong W-K, Yang H. 2020. Status of research and development of learning-based approaches in nuclear science and engineering: a review. Nucl. Eng. Des. 359. https://doi.org/10.1016/j.nucengdes.2019.110479. [CrossRef] [Google Scholar]
- Gomez-Fernandez M, Wong W-K, Tokuhiro A, Welter K, Alhawsawi AM, Yang H, Higley H, 2021, Isotope identification using deep learning: an explanation. Nucl. Inst. Methods Phys. Res. A 988: 164295. https://doi.org/10.1016/j.nima.2020.164925. [CrossRef] [Google Scholar]
- HLEG. 2019. Ethics guidelines for trustwothy AI, high level expert group on artificial intelligence. Brussels: European Commission. ISBN 978-92-76-11998-2. [Google Scholar]
- Hu Y, et al. 2019. Implementing user-defined atlas-based auto-segmentation for a large multi-centre organisation: the Australian Experience. J. Med. Radiat. Sci. 66(4): 238–249. https://doi.org/10.1002/jmrs.359. [CrossRef] [PubMed] [Google Scholar]
- Indraganti PK, Namita I, Anoushka K, 2019, Possible role of artificial intelligence in radioprotection. Front. Drug Chem. Clin. Res. 2: 1–2. https://doi.org/10.15761/FDCCR.1000133. [Google Scholar]
- IRSN. 2021a. Lancement du projet PIREX, lauréat de l’appel à projets 2019 du Fonds pour la transformation de l’action publique. IRSN Press Office. [Google Scholar]
- IRSN. 2021b. Le démélange spectral au service de la surveillance de la radioactivité dans l’environnement. IRSN Press Office. [Google Scholar]
- JSD. 2020. Session 5 : quelles perspectives (à court et moyen termes) pour les dépistages des cancers avec l’intelligence artificielle ? In: Scientific Days on Cancer Detection, Org. Paris: Institut national du cancer. [Google Scholar]
- Koo BT, Lee HC, Bae K., Kim Y, Jung J, Park CS, Kim H-S, Min CH. 2021. Development of a radionuclide identification algorithm based on a convolutional neural network for radiation portal monitoring system. Radiat. Phys. Chem. 180: 109300. https://doi.org/10.1016/j.radphyschem.2020.109300. [CrossRef] [Google Scholar]
- Korsakissok I, Girard S, Périllat R, Mallet V. 2020. Métamodèle pour la calibration d’incertitudes en dispersion atmosphérique, application à l’accident de Fukushima. In: SCIDONI workshop. IRSN. [Google Scholar]
- Le Cun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521: 436–444. [CrossRef] [PubMed] [Google Scholar]
- Lecomte J-F, et al. 2019. Summary of SFRP-IRPA workshops on the reasonableness in the practical implementation of the ALARA principle. Radioprotection 54(4): 277–281. https://doi.org/10.1051/radiopro/201903. [CrossRef] [EDP Sciences] [Google Scholar]
- Lewis SJ, Gandomkar Z, Brennan PC. 2019. Artificial Intelligence in medical imaging practice: looking to the future. J. Med. Radiat. Sci. 66(4): 292–295. https://doi.org/10.1002/jmrs.369. [CrossRef] [PubMed] [Google Scholar]
- Lopez AM, Wells A, Fendorf S. 2021. Soil and aquifer properties combine as predictors of groundwater uranium concentrations within the Central Valley, California. Environ. Sci. Technol. 55(1): 352–361. https://doi.org/10.1021/acs.est.0c05591. [CrossRef] [PubMed] [Google Scholar]
- Makovicka A, Vasseur A, Sauget M, Martin E, Gschwind R, Henriet J, Salomon M. 2009. The future of new calculation concepts in dosimetry based on the Monte Carlo methods. Radioprotection 44(1): 77–88. https://doi.org/10.1051/radiopro/2008055. [CrossRef] [EDP Sciences] [Google Scholar]
- Malchair F, Maccia C. 2020. Practical advices for optimal CT scanner dose in children. Radioprotection 55(2): 117–122. https://doi.org/10.1051/radiopro/2020046. [CrossRef] [EDP Sciences] [Google Scholar]
- Mamun O, et al. 2021. Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. Mater. Degrad. 5: 20. https://doi.org/10.1038/s41529-021-00166-5. [CrossRef] [Google Scholar]
- Mathieu Fritz A. 2021, L’intelligence artificielle en médecine : des promesses aux usages… en passant par la conception. Sci. Soc. Santé 39(2): 71–78. https://doi.org/110.1684/sss.2021.0199. [Google Scholar]
- Ménard V, Maitre M, Chambrette M, Ayadi BM, Beaumont T, Beltrami LA. 2019. Quelles innovations ? Quel avenir ? Retour sur la première journée scientifique du Club des jeunes Sociétaires de la SFRP. Radioprotection 54(4). https://doi.org/10.1051/radiopro/2019040. [Google Scholar]
- Milliat F. 2020. Approche « single cell » en biologie. In: SCIDONI Workshop. IRSN. [Google Scholar]
- Minsky M. 1961. Steps toward artificial intelligence. Comput. Thought: 406–450. [Google Scholar]
- Mendil M, Leirens S, Armand P, Duchenne C. 2021. Synthetic data and deep neural networks for atmospheric dispersion modelling in urban areas. In: 20th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 14–18 June 2020, Tartu, Estonia. [Google Scholar]
- Mentzel F, Derugin E, Jansen H, Kröninger K, Nackenhorst O, Rempe M, Walbersloh J, Weingarten J. 2021. Machine learning for personal dose monitoring − Insights into irradiation scenarios with a novel TL dosimeter. In: IRPA-15 Congress. [Google Scholar]
- NEA. 2021. Disruptive technologies for nuclear applications, webinar series, 17th March, 31st March, 14 April 2021, replay. https://www.oecd-nea.org/jcms/pl_58447/data-innovations-for-the-future-of-nuclear-safety. [Google Scholar]
- Nature. 2021. Keeping checks on artificial intelligence. Nat. Methods 18(1119). https://doi.org/10.1038/s41592-021-01300-6. [Google Scholar]
- Nony B, Rochoux MC, Lucor D, Jaravel T. 2021. Compound parametric metamodeling of large-eddy simulations for microscale atmospheric dispersion. In: 20th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 14–18 June 2021, Tartu, Estonia. [Google Scholar]
- Orchard F, Kreiche A. 2020. L’IA peut-elle améliorer le dépistage du cancer du sein en France ? The Deep.Piste project. In: Scientific Days on Cancer Detection, Org. Paris: Institut national du cancer. [Google Scholar]
- Parliament. 2018. Government response to House of Lords Artificial Intelligence Select Committee’s report, AI in the UK, Ready, willing and able? ISBN 9781528606073. [Google Scholar]
- Prevision.io. 2020. Lifecycle of a Machine Learning project − From design to production. Prevision.io. https://prevision.io/wp-content/uploads/2020/09/machine-learning-project-steps.pdf. [Google Scholar]
- Raskob W, Möhrle S, Bai S, Müller T. 2016. Overview and applicability of the analytical platform. Radioprotection 51(HS2): 179–180. https://doi.org/10.1051/radiopro/2016067. [Google Scholar]
- RANZCR. 2019. Artificial intelligence in radiology and radiation oncology. In: The State of Play 2019. The Royal Australian and New Zealand College of Radiologist. [Google Scholar]
- Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Cornell Aeronautical Laboratory. Psychol. Rev. 65(6): 386–408. [CrossRef] [PubMed] [Google Scholar]
- Sasaki M, et al. 2021. New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks. Nat. Sci. Rep. 11: 1857. https://doi.org/10.1038/s41598-021-81546-4. [CrossRef] [Google Scholar]
- SFPM. 2021. Programme de la 59e Journée Scientifiques. https://sfpm-js2021.sciencesconf.org/data/pages/SFPM_JS_Programme_2021.pdf. [Google Scholar]
- SFRO. 2020. Programme scientifique du congrès 2020 de la SFRO. https://www.sfro2020.com/programme-scientifique/5. [Google Scholar]
- Service de Santé des Armées (SSA). 2021. Actu Santé 161. [Google Scholar]
- Tjoa E, Guan C. 2015. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. J. LATEX Class Files 14: 8. https://doi/org/10.1109/TNNLS2020.3027314. [Google Scholar]
- Xu J, Bobin J, de Vismes O, Bobin C. 2019. Sparse spectral unmixing for activity estimation in γ-RAY spectrometry applied to environmental measurements. Appl. Radiat. Isot. 156: 108–803. https://doi.org/10.1016/j.apradiso.2019.108903. [Google Scholar]
- Xu J, Bobin J, de Vismes O, Bobin C, Malfrait P. 2021. Analysis of gamma-ray spectra with spectral unmixing − Part I: determination of the characteristic limits (decision threshold and statistical uncertainty). Appl. Radiat. Isot. hal-03345737. [Google Scholar]
- Xu J, Bobin J, de Vismes O, Bobin C, Malfrait P. 2022. Analysis of gamma-ray spectra with spectral unmixing − Part II: calibrations for the quantitative analysis of HPGe measurements. Appl. Radiat. Isot. 182. https://doi.org/10.1016/j.apradiso.2021.110082. [Google Scholar]
- Villiani C. 2018. Donner un sens à l’intelligence artificielle (IA) : pour une stratégie nationale et européenne. AI for humanity. ISBN 9782111457080. [Google Scholar]
- Wilkinson M, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3. [CrossRef] [Google Scholar]
- Zéphir A, Fibretigre, Chochois H. 2019. Intelligence artificielle, Miroir de nos vies. Delcourt. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.