Free Access
Issue
Radioprotection
Volume 51, Number 2, April-June 2016
Page(s) 113 - 122
DOI https://doi.org/10.1051/radiopro/2016017
Published online 26 May 2016
  • Athar B.S., Paganetti H. (2011) Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans, Radiother. Oncol. 98, 87-92. [CrossRef] [PubMed] [Google Scholar]
  • Bertini H.W. (1963) Low-energy intranuclear cascade calculation, Phys. Rev. 131, 1801-1821. [CrossRef] [Google Scholar]
  • Chadwick M.B. (1998) Neutron, proton, and photonuclear cross-sections for radiation therapy and radiation protection, Radiat. Environ. Biophys. 37, 235-242. [CrossRef] [PubMed] [Google Scholar]
  • Chadwick M.B., Young P.G., Chiba S., Frankle S.C., Hale G.M., Hughes H.G., Koning A.J., Little R.C., MacFarlane R.E., Prael R.E., Waters L.S. (1999) Cross-Section evaluations to 150 MeV for Accelerator-Driven Systems and implementation in MCNPX, Nucl. Sci. Eng. 131, 293-328. [CrossRef] [Google Scholar]
  • Dresner L. (1962) EVAP: a fortran program for calculating the evaporation of various particles from excited compound nuclei, Oak Ridge National Laboratory report ORNL-TM-196. [Google Scholar]
  • Faddegon B.A., Shin J., Castenada C.M., Ramos-Méndez J., Daftari K. (2015) Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation, Med. Phys. 42, 4199-4210. [CrossRef] [PubMed] [Google Scholar]
  • Farah J., Martinetti F., Sayah R., Lacoste V., Donadille L., Trompier F., Nauraye C., De Marzi L., Vabre I., Delacroix S., Hérault J., Clairand I. (2014) Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations, Phys. Med. Biol. 59, 2747-2765. [CrossRef] [PubMed] [Google Scholar]
  • Fontenot J., Taddei P., Zheng Y., Mirkovic D., Jordan T., Newhauser W. (2008) Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer, Phys. Med. Biol. 53, 1677-1688. [CrossRef] [PubMed] [Google Scholar]
  • Gottschalk B., Koehler A.M., Schneider R.J., Sisterson J.M., Wagner M.S. (1993) Multiple Coulomb scattering of 160 MeV protons, Nucl. Instrum. Methods Phys. Res. B 74, 467-490. [CrossRef] [Google Scholar]
  • Hall E.J. (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers, Int. J. Radiat. Oncol. Biol. Phys. 65, 1-7. [CrossRef] [PubMed] [Google Scholar]
  • Hérault J., Iborra N., Serrano B., Chauvel P. (2005) Monte Carlo simulation of a proton therapy platform devoted to ocular melanoma, Med. Phys. 32, 910-919. [CrossRef] [PubMed] [Google Scholar]
  • Hérault J., Iborra N., Serrano B., Chauvel P. (2007) Spread-out Bragg peak and monitor units calculation with the Monte Carlo Code MCNPX, Med. Phys. 34, 680-688. [CrossRef] [PubMed] [Google Scholar]
  • Hong L., Goitein M., Bucciolini M., Comiskey R., Gottschalk B., Rosenthal S., Serago C., Urie M. (1996) A pencil beam algorithm for proton dose calculations, Phys. Med. Biol. 41, 1305-1330. [CrossRef] [PubMed] [Google Scholar]
  • IBA (2007) Ionization chambers and diode detectors, Detectors for relative and absolute dosimetry, IBA dosimetry. [Google Scholar]
  • Mesoloras G., Sandison G.A., Stewart R.D., Farr J.B., Hsi W.C. (2006) Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother, Med. Phys. 33, 2479-2490. [CrossRef] [PubMed] [Google Scholar]
  • Miralbell R., Lomax A., Cella L., Schneider U. (2002) Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors, Int. J. Radiat. Oncol. Biol. Phys. 54, 824-829. [CrossRef] [PubMed] [Google Scholar]
  • Newhauser W., Koch N., Hummel S., Ziegler M., Titt U. (2005) Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams, Phys. Med. Biol. 50, 5229-5249. [CrossRef] [PubMed] [Google Scholar]
  • Newhauser W.D., Fontenot J.D., Mahajan A., Kornguth D., Stovall M., Zheng Y., Taddei P.J., Mirkovic D., Mohan R., Cox J.D., Woo S. (2009) The risk of developing a second cancer after receiving craniospinal proton irradiation, Phys. Med. Biol. 54, 2277-2291. [CrossRef] [PubMed] [Google Scholar]
  • Pelowitz D.B. (2008) MCNPX User’s Manual Version 260, LA-CP-07-1473. [Google Scholar]
  • Polf J.C., Harvey M.C., Titt U., Newhauser W.D., Smith A.R. (2007) Initial beam size study for passive scatter proton therapy I. Monte Carlo verification, Med. Phys. 34, 4213-4218. [CrossRef] [PubMed] [Google Scholar]
  • Rossi B., Greisen K. (1941) Cosmic-ray theory, Rev. Mod. Phys. 13, 240-309. [NASA ADS] [CrossRef] [Google Scholar]
  • Sayah R., Donadille L., Aubé A., Hérault J., Delacroix S., De Marzi L., Stichelbaut F., Clairand I. (2013) Monte Carlo simulation of a proton therapy beam line for intracranial treatments, Radioprotection 48, 317-339. [CrossRef] [Google Scholar]
  • Sayah R., Farah J., Donadille L., Hérault J., Delacroix S., De Marzi L., De Oliveira A., Vabre I., Stichelbaut F., Lee C., Bolch W.E., Clairand I. (2014) Secondary neutron doses received by paediatric patients during intracranial proton therapy treatments, J. Radiol. Prot. 34, 279-296. [CrossRef] [PubMed] [Google Scholar]
  • Shin D., Yoon M., Kwak J., Shin J., Lee S.B., Park S.Y., Park S., Kim D.Y., Cho K.H. (2009) Secondary neutron doses for several beam configurations for proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 74, 260-265. [CrossRef] [PubMed] [Google Scholar]
  • Szymanowski H., Mazal A., Nauraye C., Biensan S., Ferrand R., Murillo M.C., Caneva S., Gaboriaud G., Rosenwald J.C. (2001) Experimental determination and verification of the parameters used in a proton pencil beam algorithm, Med. Phys. 28, 975-987. [CrossRef] [PubMed] [Google Scholar]
  • Vavilov P.V. (1957) Ionization losses of high-energy heavy particles, Sov. Phys. JETP 5, 749-751. [Google Scholar]
  • Zacharatou Jarlskog C., Lee C., Bolch W.E., Xu X.G., Paganetti H. (2008) Assessment of organ specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms, Phys. Med. Biol. 53, 693-717. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.