Free Access
Volume 49, Number 1, Janvier-Mars 2014
Page(s) 35 - 41
Section Articles
Published online 16 December 2013
  • Bongartz G. et al. (1999) Guidelines on Quality Criteria for Computed Tomography. Brussels, Belgium : European Commission, Report EUR 16262 EN, 70. [Google Scholar]
  • Christner J.A., Kofler J.M., McCollough C.H. (2010) Estimating effective dose for CT using dose-length product compared with using organ doses : consequences of adopting ICRP Publication 103 or dual-energy scanning, Am. J. Roentgenol. 194 (4), 881-889. [CrossRef] [Google Scholar]
  • Einstein A.J., Henzlova M.J., Rajagopalan S. (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography, J. Am. Med. Assoc. 298 (3), 317-323. [CrossRef] [PubMed] [Google Scholar]
  • Etard C., Sinno-Tellier S., Aubert B. (2010) L’exposition de la population française aux rayonnements ionisants liée aux actes de diagnostic médical en 2007, Institut de veille sanitaire (InVS) et l’Institut de radioprotection et de sûreté nucléaire (IRSN), pp. 17-18, 34-37. [Google Scholar]
  • Guite K.M. et al. (2011) Ionizing radiation in abdominal CT : unindicated multiphase scans are an important source of medically unnecessary exposure, J. Am. Coll. Radiol. 8 (11), 756-761. [CrossRef] [PubMed] [Google Scholar]
  • Hara A.K. et al. (2009) Iterative reconstruction technique for reducing body radiation dose at CT : feasibility study, Am. J. Roentgenol. 193 (3), 764-771. [CrossRef] [Google Scholar]
  • Heyer C.M., Mohr P.S., Lemburg S.P., Peters S.A. (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol : prospective randomized study, Radiology 245 (2), 577-583. [CrossRef] [PubMed] [Google Scholar]
  • JORF (2012) Arrêté du 24 octobre 2011 relatif aux niveaux de référence diagnostiques en radiologie et en médecine nucléaire. Journal officiel de la république française du 14 janvier 2012. [Google Scholar]
  • Kalra M.K. et al. (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis, Radiology 232 (2), 347-353. [CrossRef] [PubMed] [Google Scholar]
  • Marin D. et al. (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT : improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience, Radiology 254 (1), 145-153. [CrossRef] [PubMed] [Google Scholar]
  • Martinsen A.C.T., Sæther H.K., Hol P.K., Olsen D.R., Skaane P. (2012) Iterative reconstruction reduces abdominal CT dose, Eur. J. Radiol. 81 (7), 1483-1487. [CrossRef] [PubMed] [Google Scholar]
  • May M.S. et al. (2011) Dose reduction in abdominal computed tomography : intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography, Invest. Radiol. 46 (7), 465-470. [CrossRef] [PubMed] [Google Scholar]
  • Nakaura T. et al. (2011) Abdominal dynamic CT in patients with renal dysfunction : contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT, Radiology 261 (2), 467-476. [CrossRef] [PubMed] [Google Scholar]
  • Noël P.B. et al. (2011) Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT, Am. J. Roentgenol. 197 (6), 1404-1409. [CrossRef] [Google Scholar]
  • Prakash P. et al. (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique, Invest. Radiol. 45 (4), 202-210. [CrossRef] [PubMed] [Google Scholar]
  • Qiu W. et al. (2010) New iterative cone beam CT reconstruction software : parameter optimisation and convergence study, Comput. Methods Programs Biomed. 100 (2), 166-174. [CrossRef] [PubMed] [Google Scholar]
  • Rampado O., Bossi L., Garabello D. (2012) Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom, Eur. J. Radiol. 81 (11), 3172-3177. [CrossRef] [PubMed] [Google Scholar]
  • Rengo M. et al. (2011) The optimal contrast media policy in CT of the liver. Part I : Technical notes, Acta Radiol. 52 (5), 467-472. [CrossRef] [PubMed] [Google Scholar]
  • Sagara Y. et al. (2010) Abdominal CT : comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients, Am. J. Roentgenol. 195 (3), 713-719. [CrossRef] [Google Scholar]
  • Schindera S.T. et al. (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages : assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study, Radiology 260 (2), 454-462. [CrossRef] [PubMed] [Google Scholar]
  • Söderberg M., Gunnarsson M. (2010) Automatic exposure control in computed tomography-an evaluation of systems from different manufacturers, Acta Radiol. 51 (6), 625-634. [CrossRef] [PubMed] [Google Scholar]
  • Sodickson A. et al. (2009) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults, Radiology 251 (1), 175-184. [CrossRef] [PubMed] [Google Scholar]
  • Valentin J. (2007) Managing patient dose in multi-detector computed tomography (MDCT), ICRP Publication 102. [Google Scholar]
  • Van der Molen A.J., Geleijns J. (2007) Overranging in multisection CT : quantification and relative contribution to dose-comparison of four 16-section CT scanners, Radiology 242 (1), 208-216. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.