Free Access
Issue
Radioprotection
Volume 42, Number 2, April-June 2007
Page(s) 133 - 161
Section Article invité
DOI https://doi.org/10.1051/radiopro:2007007
Published online 28 June 2007
  • Amundson S.A., Lee R.A., Koch-Paiz C.A., Bittner M.L., Meltzer P., Trent J.M., Fornace A.J. Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation, Mol. Cancer Res. 1, 445-452. [PubMed] [Google Scholar]
  • Andersson M., Storm H.H. (1992) Cancer incidence among Danish thorotrast-exposed patiens, J. Natl. Cancer Inst. 84, 1318-1325. [CrossRef] [PubMed] [Google Scholar]
  • Averbeck D. (2000) Mecanismes de réparation et mutagénèse radioinduite chez les eucaryotes supérieurs, Cancer Radiother. 4, 1-20. [Google Scholar]
  • Averbeck D. (2007) New biological data in relation with low dose risk, DOE, in press. [Google Scholar]
  • Averbeck D., Testard L., Boucher D. (2006) Changing views on ionizing radiation-induced cellular effects, Int. J. Low Rad. 3, 117-134. [CrossRef] [Google Scholar]
  • Bakkenist C.J., Kastan M.B. (2004) Initiating cellular stress responses, Cell 118, 9-17. [CrossRef] [PubMed] [Google Scholar]
  • Barcellos-Hoff M.H. (2005) Integrative Radiation Carcinogenesis: interactions between cell and tissue responses to DNA damage, Sem. Cancer Biol. 15, 138-148. [CrossRef] [Google Scholar]
  • Bartkova J., Rezaei N., Liontos M. et al. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints, Nature 444, 633-637. [CrossRef] [PubMed] [Google Scholar]
  • Beachy P.A., Karhadhar S.S., Berman D. (2004) Tissue repair and stem cell renewal in carcinogenesis, Nature 432, 324-331. [CrossRef] [PubMed] [Google Scholar]
  • BEIR VII (2005) National Research Council of the National Academies of USA, Health risk from exposure to low levels of ionizing radiation. Pre-publication version, July 2005. [Google Scholar]
  • Belyakov O.V., Folkard M., Mothersill C., Prise K.M., Michael B.D. (2006) Bystander induced differentiation: a major response to targeted irradiation of a urothelial explant model, Mutat. Res. 597, 43-49. [CrossRef] [PubMed] [Google Scholar]
  • Berrington A., Darby S.C., Weiss H.A., Doll R. (2001) 100 years of observation on British Radiologists: mortality from cancer and other causes 1987-1997, Br. J. Radiology 74, 507-519. [Google Scholar]
  • Berrington de Gonzalez A., Darby S. (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries, Lancet 363, 345-351. [CrossRef] [PubMed] [Google Scholar]
  • Bhowmick N.A., Chytil A., Plieth D., Gorska A.E., Dumont N., Shappell S., Washington M.K., Neilson E.G., Moses H.L. (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia, Science 303, 775-777. [CrossRef] [PubMed] [Google Scholar]
  • Bishay K., Ory K., Olivier M.F., Lebeau J., Levalois C., Chevillard S. (2001) DNA damage-related RNA expression to assess individual sensitivity to ionizing radiation, Carcinogenesis 22, 1179-1183. [CrossRef] [PubMed] [Google Scholar]
  • Bithell J.F. (1993) Statistical issues in assessing the evidence associating obstetric irradiation and childhood malignancy, E. Lengfelder, H. Wendhausen (Eds). Neue Bewertung des Strahlenriskos, Niedrigdosis Strahlung und Gesundheit, Munich, pp. 53-60. [Google Scholar]
  • Blettner M., Zeeb H., Auviven A. et al. (2003) Mortality from cancer and other causes among male airline cockpit in Europe, Int. J. Cancer 106, 946-952. [CrossRef] [PubMed] [Google Scholar]
  • Boice J.D., Preston D., Davis F.G., Monson R.R. (1991a) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts, Radiat. Res. 125, 214-222. [CrossRef] [PubMed] [Google Scholar]
  • Boice J.D.J., Morin M.M., Glass A.G. et al. (1991b) Diagnostic X-ray procedures and risk of leukemia, lymphoma, and multiple myeloma, JAMA 265, 1290-1294. [CrossRef] [PubMed] [Google Scholar]
  • Boice J.D.J., Engholm G., Kleinerman R.A. et al. (1998) Radiation dose and second cancer risk in patients treated for cancer of the cervix, Radiat. Res. 116, 3-55. [CrossRef] [Google Scholar]
  • Boucher D., Hindo J., Averbeck D. (2004) Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells, Can. J. Physiol. Pharmacol. 82, 125-132. [CrossRef] [PubMed] [Google Scholar]
  • Brash D.E. (1997) Sunlight and the onset of skin cancers, Trend. Genet. 13, 410-414. [CrossRef] [Google Scholar]
  • Bravard A., Luccioni C., Moustacchi E., Rigaud O. (1999) Contribution of antioxydant enzymes in the adaptative response to ionizing radiation of human lymphoblasts, Int. J. Radiat. Biol. 75, 639-645. [CrossRef] [PubMed] [Google Scholar]
  • Breckow J. (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model, Radiat. Environ. Biophys. 44, 257-260. [CrossRef] [PubMed] [Google Scholar]
  • Brenner D.J., Doll R., Goodhead D.T., Hall E.J., Land C.E., Little J.B., Lubin J.H., Preston D.L., Preston R.J., Puskin J.S., Ron E., Sachs R.K., Samet J.M., Setlow R.B., Zaider M. (2003) Cancer risk attributable to low doses of ionizing radiation: Assessing what we really know, Proc. Natl. Acad. Sci. USA 100, 13761-13766. [CrossRef] [Google Scholar]
  • Brenner D.J., Sachs R.K. (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach, Radiat. Environ. Biophys. 44, 253-256. [CrossRef] [PubMed] [Google Scholar]
  • Burns F.J., Albert R.E. (1986) “Dose-response for radiation-induced cancer in rat skin”, In Radiation carcinogenesis and DNA alterations, F.J. Burns, A.C. Upton, G. Silini (Eds). Plenum Press, Lifes Sciences, pp. 51-70. [Google Scholar]
  • Cardis E., Gilbert E.S., Carpenter L. et al. (1995) Effects of low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries, Radiat. Res. 142, 117-132. [CrossRef] [PubMed] [Google Scholar]
  • Cardis E., Kesminienne A., Ivanov V. et al. (2005a) Risk of thyroid cancer after exposure to 131I in childhood, J. Nat. Cancer Inst. 97, 724-732. [CrossRef] [PubMed] [Google Scholar]
  • Cardis E., Vrijheid M., Blettner M. et al. (2005b) Risk of cancer after low doses of ionising radiation : retrospective cohort study in 15 countries, Brit. Med. J. 333, 77-83. [CrossRef] [Google Scholar]
  • Cardis E., Howe G., Ron E., Bebeshko V.G., Bogdanova T., Bouville A. et al. (2006) Cancer consequences of the Chernobyl Accidet: 20 Years After, J. Radiol. Prot. 26, 125-137. [CrossRef] [PubMed] [Google Scholar]
  • Carnes B.A., Groer P.G., Kotec T.J. (1997) Radium dial workers: Issues concerning dose response and modeling, Radiat. Res. 147, 707-714. [CrossRef] [PubMed] [Google Scholar]
  • Castronovo F. (1999) Teratogen update: Radiation and Chernobyl, Teratology 60, 100-106. [CrossRef] [PubMed] [Google Scholar]
  • Chalmers A., Johnston P., Woodcock M., Joiner M., Marples B. (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation, Int. J. Radiat. Oncol. Biol. Phys. 58, 410-419. [CrossRef] [PubMed] [Google Scholar]
  • Collis S.J., Schwaninger J.M., Ntambi A.J., Keller T.W., Nelson W.G., Dillehay L.E., Deweese T.L. (2004) Evasion of early cellular response mechanisms following low level radiation induced DNA damage, J. Biol. Chem. 279, 49624-49632. [CrossRef] [PubMed] [Google Scholar]
  • Darby S., Hill D., Auvinene A., Barros-Dios J.M. et al. (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, Brit. Med. J. 330, 223-227. [CrossRef] [PubMed] [Google Scholar]
  • Darby S., Hill D., Deo H., Auvinen A. et al. (2006) Residential radon and lung cancer-detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiologic studies in Europe, Scand. J. Work Environ. Health 32 (Suppl 1), 1-83. [Google Scholar]
  • Davis F.G., Boice J.D.J., Hrubec Z., Monson R.R. (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients, Cancer Res. 49, 6130-6136. [PubMed] [Google Scholar]
  • De Toledo S.M., Asaad N., Venkatachalam P., Li L., Howell R.W., Spitz D.R., Azzam E.I. (2006) Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism, Radiat. Res. 166, 849-857. [CrossRef] [PubMed] [Google Scholar]
  • de Vathaire F., Hardiman C., Shamsalidin A. et al. (2000) Thyroid carcinoma following irradiation for a first cancer during childhood, Arch. Inter. Med. 159, 2713-2719. [CrossRef] [Google Scholar]
  • Delongchamp R.R., Mabushi K., Yasuhiko Y. et al. (1997) Cancer mortality among atomic bomb survivors exposed in utero or as young chidren, Radiat. Res. 147, 385-395. [CrossRef] [PubMed] [Google Scholar]
  • Dickman P.W., Holm L.E., Lundell G.R., Boice J.D., Hall P. (2003) Thyroid cancer risk after thyroid examination with 131I: a population based cohort study in Sweden, Int. J. Cancer 106, 580-587. [CrossRef] [PubMed] [Google Scholar]
  • Dikomey E., Brammer I. (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal fibroblast line, Int. J. Radiat. Biol. 76, 773-781. [CrossRef] [PubMed] [Google Scholar]
  • Doll R., Wakeford R. (1997) Risk of childhood cancer from fetal irradiation, Br. J. Radiol. 70, 130-139. [PubMed] [Google Scholar]
  • Donadieu J., Scanff P., Pirard P., Aubert B. (2006) Exposition médicale aux rayonnements ionisants à vise diagnostique de la population française : état des lieux fin 2002 en vue de la mise en place d’un système de surveillance, BEH 15-16, 102-106. [Google Scholar]
  • Doody M.M., Mandel J.S., Lubin J.H., Boice J.D. (1998) Mortality among USA radiologic technologists 1926-1990, Cancer Causes Control 9, 67-75. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Doody M.M., Lonstein J.E., Stovall M., Hacker D.G., Luckyanov N., Land C.E. (2000) U.S. Scoliosis Cohort Study Collaborators. Breast cancer mortality following diagnostic X-rays: Findings from the U.S. Scoliosis Cohort Study, Spine 25, 2052-2063. [CrossRef] [PubMed] [Google Scholar]
  • Duport P. (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations, Int. J. Low Radiation 1, 120-131. [CrossRef] [Google Scholar]
  • Euvrard S., Kanitakis J., Claudis D. (2003) Skin cancers after organ transplantation, N. Engl. J. Med. 348, 1681-1691. [CrossRef] [PubMed] [Google Scholar]
  • Fernet M., Ponette V., Deniaud-Alexandre E., Menissier-De Murcia J., De Murcia G., Giocanti N., Megnin-Chanet F., Favaudon V. (2000) Poly (ADP-Ribose) polymerase, a major determinant of early cell response X ionising radiation, Int. J. Rad. Oncol. Biol. Phys. 76, 73-84. [Google Scholar]
  • Franco N., Lamartine J., Frouin V. et al. (2005) Low-Dose Exposure to γ rays induces specific gene regulations in normal human keratinocytes, Radiat. Res. 163, 623-635. [CrossRef] [PubMed] [Google Scholar]
  • Franklyn J.A., Maisonneuve L., Sheppard M., Betteridge T., Boyle P. (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population based study, Lancet 353, 2111-2115. [CrossRef] [PubMed] [Google Scholar]
  • Fry S.A. (1998) Studies of US radium dial workers: An epidemiological classic, Radiat. Res. 150, S21-S29. [CrossRef] [PubMed] [Google Scholar]
  • Gambard J.P., Mitton N., Pirard P. (2000) Campagne nationale de mesure de l’exposition domestique au radon IPSN-DGS Bilan et représentation cartographique des mesures au 1er janvier 2000, www.ipsn.fr. [Google Scholar]
  • Hahn K., Schnell-Inderst P., Grosche B., Holm L.E. (2001) Thyroid cancer after diagnostic administration of iodine-131 in childhood, Radiat. Res. 156, 61-70. [CrossRef] [PubMed] [Google Scholar]
  • Harvey E.B., Boice J.D., Honeyman M., Flannery J.T. (1985) Prenatal X-ray exposure and childhood cancer in twins, N. Engl. J. Med. 312, 541-545. [CrossRef] [PubMed] [Google Scholar]
  • Hayata J., Wang C., Zhang W. et al. (2004). Effect of hight level natural radiation on chromosomes of residents in southern china, Cytogenet. Genome Res. 104, 237-239. [Google Scholar]
  • Hoffman D.A., Bronstein J.E., Morin M.M. (1989) Breast cancer in women with scoliosis exposed to multiple diagnosis X-rays, J. Natl. Cancer Inst. 81, 1307-1312. [CrossRef] [PubMed] [Google Scholar]
  • Holm L.E., Hall P., Wiklund K. et al. (1991) Cancer risk after iodine-131 therapy for hyperthyroidism, J. Natl. Cancer Inst. 83, 1072-1077. [CrossRef] [PubMed] [Google Scholar]
  • Howe G.R., Zablotska L.B., Fix J.J., Egel J., Buchanan J. (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation, Radiat. Res. Nov. 162(5), 517-26. [Google Scholar]
  • Hrubec Z., Boice J.D., Monson R.R., Rosenstein M. (1989) Breast Cancer after multiple chest fluoroscopies: second follow-up of Massachusetts Women with Tuberculosis, Cancer Res. 49, 229-234. [PubMed] [Google Scholar]
  • ICRP Publication 99 (2005) Low-dose Extrapolation of Radiation-related cancer Risk, Ann. ICRP 35(4). [Google Scholar]
  • Inksip P.D., Harvey E.B., Boice J.D. et al. (1991) Incidence of cancer in twins, Cancer Causes Control 2, 315-324. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Inskip P.D., Ekbom A., Galanti M.R., Grimelius L., Boice J.D.J. (1995) Medical diagnostic X rays and thyroid cancer, J. Natl. Cancer Inst. 87, 1613-1621. [CrossRef] [PubMed] [Google Scholar]
  • Ivanov V., Ilyin L., Gorski A., Tukov A., Naumenko R. (2004) Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl, J. Radiat. Res. (Tokyo) 45, 41-44. [CrossRef] [PubMed] [Google Scholar]
  • Jaworowski Z. (2006) The real Chernobyl folly, 21st century, Spring, 59-72. [Google Scholar]
  • Kamiya K., Yasukawa-Barnes J., Mitchen J., Gould M., Clifton K. (1995) Evidence that carcinogenesis involves an imbalance between epigenetic high frequency initiation and suppression of promotion, PNAS 92, 1332-1336. [CrossRef] [Google Scholar]
  • Katayama H., Matsuura M., Endo S., Hoshi M., Ohtaki M., Hayakawa N. (2002) Reassessment of the cancer mortality risk among Hiroshima atomic-bomb survivors using a new dosimetry system, ABS2000D, compared with ABS93D, J. Radiat. Res. (Tokyo) 43, 53-64. [CrossRef] [PubMed] [Google Scholar]
  • Ko M., Lao X.Y., Kapadia R., Elmore E., Redpath J.L. (2006) Neoplastic transformation in vitro by low doses of ionizing radiation: role of adaptive response and bystander effects, Mutat. Res. 597, 11-17. [CrossRef] [PubMed] [Google Scholar]
  • Krewski D., Lubin J.H., Zielinski J.M., Alavanja M., Catalan V.S., Field R.W., Klotz J.B., Letourneau E.G, Lynch C.F., Lyon J.I., Sandler D.P., Schoenberg J.B., Steck D.J., Stolwijk J.A., Weinberg C., Wilcox H.B. (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies, Epidemiology 16, 137-145. [CrossRef] [PubMed] [Google Scholar]
  • Little M.P., Muirhead C.R. (1996) Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors, Int. J. Radiat. Biol. 70, 83-94. [CrossRef] [PubMed] [Google Scholar]
  • Little M.P., Muirhead C.R. (2000) Derivation of low dose extrapolation factors from analysis of the curvature in the cancer incidence dose response in Japanese atomic bomb survivors, Int. J. Radiat. Biol. 76, 939-953. [CrossRef] [PubMed] [Google Scholar]
  • Liu Z., Mothersill C.E., McNeill F.E., Lyng F.M., Byun S.H., Seymour C.B., Prestwich W.V. (2006) A dose threshold for a medium transfer bystander effect for a human skin cell line, Radiat. Res. 166, 19-23. [CrossRef] [PubMed] [Google Scholar]
  • Löbrich M., Rief N., Kuhne M., Fleckenstein J., Rube C., Uder M. (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations, Proc. Natl. Acad. Sci. USA 102, 8984-8989. [CrossRef] [Google Scholar]
  • Loucas B.D., Eberle R., Bailey S.M. Cornforth M.N. (2004) Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays, Radiat. Res. 162, 339-349. [CrossRef] [PubMed] [Google Scholar]
  • Lyng F.M., Seymour C.B., Mothersill C. (2002) Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat. Res. 57, 365-370. [CrossRef] [Google Scholar]
  • Lyng F.M., Maguire P., McClean B., Seymour C., Mothersill C. (2006a) The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects, Radiat. Res. 165, 400-409. [CrossRef] [PubMed] [Google Scholar]
  • Lyng F.M., Maguire P., Kilmurray N., Mothersill C., Shao C., Folkard M., Prise K.M. (2006b) Apoptosis is initiated in human keratinocytes exposed to signalling factors from microbeam irradiated cells, Int. J. Radiat. Biol. 82, 393-399. [CrossRef] [PubMed] [Google Scholar]
  • Marples B., Wouters B.G., Collis S.J., Chalmers A.J., Joiner M.C. (2004) Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells, Radiat. Res. 161, 247-255. [CrossRef] [PubMed] [Google Scholar]
  • Meeting report (2006) Low-Dose Radiation Risk Assessment Report, International Workshop on Low Dose Radiation Effects, Columbia University Medical Center, New York, April 3–4, 2006, Rad. Res. 166, 561-565. [CrossRef] [Google Scholar]
  • Menard C., Johann D., Lowenthal M. et al. (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis, Cancer Res. 66, 1844-1850. [CrossRef] [PubMed] [Google Scholar]
  • Mercier G., Berthault N., Mary J., Peyre J., Antoniadis A., Comet J.P., Cornuejols A., Froidevaux C., Dutreix M. (2004) Biological detection of low radiation doses by combining results of two microarray analysis methods, Nucleic Acids Res. 32(1), e12. [Google Scholar]
  • Mezei G., Borugian M.J., Spinelli J.J., Wilkins R., Abanto Z., McBride M.L. (2006) Socioeconomic status and childhood solid tumor and lymphoma incidence in Canada, Am. J. Epidemiol. 164, 170-175. [CrossRef] [PubMed] [Google Scholar]
  • Mifune M., Sobue T., Arimoto H., Komoto Y., Kondo S., Tanooka H. (1992) Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background, Jpn J. Cancer Res. 83, 1-5. [PubMed] [Google Scholar]
  • Miller A.B., Howe G.R., Sherman G.J. et al. (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis, N. Engl. J. Med. 321, 1285-1289. [CrossRef] [PubMed] [Google Scholar]
  • Miller R.C., Randers-Pehrson G., Geand C.R., Hall E., Brenner D.J. (1999) The oncogenic transforming potentiel of the passage of single alpha particles through mammalian cell nuclei, Proc. Natl. Acad. Sci. USA 96, 19-22. [CrossRef] [Google Scholar]
  • Mohan A.K., Hauptmann M., Linet M.S. et al. (2002) Breast cancer mortality among female radiologic technologists in the United States, J. Natl. Cancer Inst. 94, 943-948. [PubMed] [Google Scholar]
  • Mohan A.K., Hauptmann M., Freedman D.M. et al. (2003) Cancer and other causes of mortality among radiologic technologists in the United States, Int. J. Cancer 103, 259-67. [CrossRef] [PubMed] [Google Scholar]
  • Mole R.H. (1974) Antenatal irradiation and childhood cancer: causation or coincidence, Br. J. Cancer 30, 199-208. [CrossRef] [PubMed] [Google Scholar]
  • Monchaux G. (2004). Risk of fatal versus incidental lung cancer in radon exposed rats: a reanalysis of French date, Archv. Oncol. 12, 7-12. [Google Scholar]
  • Monchaux G., Morlier J.P., Altmeyer S, Debroche M., Morin M. (1999) Influences of exposure rate on lung cancer induction in rats exposed to radon progeny, Radiat. Res. 152, S137-S140. [CrossRef] [PubMed] [Google Scholar]
  • Monson R.R., MacMahon B. (1984) “Prenatal X-ray exposure and cancer in children”, In Radiation carcinogenesis: Epidemiology and biological significance, J.D. Boice, J.F. Fraumeni (Eds). Raven Press, New York, pp. 97-105. [Google Scholar]
  • Mothersill C., Seymour C. (1997) Lethal mutations and genomic instability, Int. J. Radiat. Biol. 71, 751-758. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C. (2001) Radiation-induced bystander effects: past history and future directions, Radiat. Res. 155, 759-67. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C. (2006a) Radiation-induced bystander and other non-targeted effects: novel intervention points in cancer therapy? Curr. Cancer. Drug. Targets 6, 447-454. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C.B. (2006b) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective, Mutat. Res. 11, 5-10. [Google Scholar]
  • Mueller M.M., Fusening N.E. (2004) Friends or foes. Bipolar effects of the tumour stroma in cancer, Nature Rev. 4, 839-849. [Google Scholar]
  • Nair M.K., Nambi K.S., Amma N.S. et al. (1999) Population study in the high natural background radiation area in Kerala, Ind. Radiat. Res. 152, S145-S148. [CrossRef] [Google Scholar]
  • Naumburg E., Belloco R., Cnattingius S. et al. (2002) Intrauterine exposure to diagnostic of X rays and risk of childhood leukemia subtypes, Radiat. Res. 156, 718-723. [CrossRef] [Google Scholar]
  • Noguchi K., Shimizu M., Anzai Z. (1986) Correlation between natural radiation exposure and cancer mortality in Japan (I), J. Radiat. Res. 27, 191-212. [CrossRef] [PubMed] [Google Scholar]
  • Nyberg U., Nilsson B., Travis L.B., Holm L.E., Hall P. (2002) Cancer incidence among Swedish patients exposed to radioactive thorotrast: a forty-year follow-up survey, Radiat. Res. 157, 419-425. [CrossRef] [PubMed] [Google Scholar]
  • Oppenheim B.E., Griem M.L., Meier P. (1975) The effects of diagnostic X-ray exposure on the human fetus: an examination of the evidence, Radiology 114, 529-534. [PubMed] [Google Scholar]
  • Park J.F. (1990) Inhaled plutonium oxide in dog, In “Pacific Northwest laboratory Report for 1989 to the DOE Office of Energy Research Part I: Biomedical Sciences”, Springfield, VA: National Technical Information Service, pp. 11-28, 101-107. [Google Scholar]
  • Park J.F. (1992) Inhaled plutonium oxide in dog, In “Pacific Northwest laboratory Report for 1991 to the DOE Office of Energy Research Part I: Biomedical Sciences”, Springfield, VA: National Technical Information Service. [Google Scholar]
  • Ponette V., Le Pechoux C., Deniaud-Alexandre E., Fernet M., Giocanti N., Tourbez H., Favaudon V. (2000) Hyperfast early cell response to ionising radiation, Int. J. Rad. Oncol. Biol. 72, 1233-1243. [Google Scholar]
  • Portess D.I., Bauer G., Hill M.A., O’Neill P. (2007) Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis, Cancer Res. 67, 1246-1253. [CrossRef] [PubMed] [Google Scholar]
  • Preston D.L., Mattsson A., Holmberg E., Shore R., Hildreth N.G., Boice J.D. (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts, Radiat. Res. 158, 220-235. [CrossRef] [PubMed] [Google Scholar]
  • Preston D.L., Pierce D.A., Shimizu Y. et al. (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates, Radiat. Res. 162, 377-389. [CrossRef] [PubMed] [Google Scholar]
  • Raabe O.G., Book S.A. (1981) Dose-response relationship for bone tumors in beagle exposed to 226Ra and 90Sr, Health Phys. 40, 863-880. [CrossRef] [PubMed] [Google Scholar]
  • Raabe O.G., Book S.A., Parks N.J. (1983) Lifetime bone cancer response relationships in beagles and people from skeletal burdens of 226Ra and 90Sr, Health Phys. 44(Suppl 1), 33-48. [Google Scholar]
  • Radisky D.C., Bissell M.J. (2004) Cancer. Respect thy neighbor! Science 303, 774-775. [CrossRef] [PubMed] [Google Scholar]
  • Redpath J.L. (2004) Radiation induced neoplastic transformation in vitro: evident for a protective effect at low doses of low LET, Rad. Cancer Metast. Rev. 23, 333-339. [CrossRef] [Google Scholar]
  • Rigaud O., Moustacchi E. (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response, Mutat. Res. 358, 127-134. [CrossRef] [PubMed] [Google Scholar]
  • Rodvall Y., Pershagen G., Hrubec Z., Ahlbom A., Pedersen N.L., Boice J.D. (1990) Prenatal X-ray exposure and childhood cancer in Swedish twins, Int. J. Cancer 46, 362-365. [CrossRef] [PubMed] [Google Scholar]
  • Rodvall Y., Hrubec Z., Pershagen G. et al. (1992) Childhood cancer among Swedish twins, Cancer Causes Control 3, 527-532. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Roos W.P., Kaina B. (2006) DNA damage-induced cell death by apoptosis, Trends Mol. Med.12, 440-450. [Google Scholar]
  • Rothkamm K., Löbrich M. (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses, Proc. Natl. Acad. Sci. USA 100, 5057-5062. [CrossRef] [Google Scholar]
  • Rowland R.E., Stehney A.F., Lucas H.F. (1983) Dose-reponse relationships for radium-induced bone sarcomas, Health Phys. 44(Suppl. 1), 15-31. [Google Scholar]
  • Rubino C., de Vathaire F., Shamsaldin A., Labbe M., Le M.G. (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment, Br. J. Cancer 89, 840-846. [CrossRef] [PubMed] [Google Scholar]
  • Samet J.M., Speizer F.E. (1993) Assessment of health effects in epidemiologic studies of air pollution, Environ. Health Persp. 101(Suppl 4), 149-154. [Google Scholar]
  • Sanders C.L., Lauhala K.E., McDonald K.E. (1993) Lifespan studies in rats exposed to 239PuO2. III. Survival and lung tumors, Int. J. Radiat. Biol. 64, 417–430. [CrossRef] [PubMed] [Google Scholar]
  • Scott B. (2006) Risk of thyroid cancer after exposure to (131)I in childhood, Response Cardis E., Kesminienne A., J. Nat. Cancer Inst. 98, 561. [Google Scholar]
  • Shilnikova N.S., Preston D.L., Ron E. et al. (2003) Cancer mortality risk among workers at the Mayak nuclear complex, Radiat. Res. 159, 787-798. [CrossRef] [PubMed] [Google Scholar]
  • Shu X.O., Potter J.D., Linet M.S., Severson R.K., Han D., Kersey J.H., Neglia J.P., Trigg M.E., Robison L.L. (2002) Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype, Cancer Epidemiol. Biomarkers Prev. 11, 177-185. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Sigurdson A.J., Doody M.M., Rao R.S. et al. (2003) Cancer incidence in the US radiologic technologists health study, 1983-1998, Cancer 97, 3080-3089. [CrossRef] [PubMed] [Google Scholar]
  • Sobue T., Lee V.S., Ye W., Tanooka H., Mifune M., Suyama A., Koga T., Morishima H., Kondo S. (2000) Residential radon exposure and lung cancer risk in Misasa, Japan: a case-control study, J. Radiat. Res. (Tokyo) 41, 81-92. [CrossRef] [PubMed] [Google Scholar]
  • Spengler R.F., Cook D.H., Clarke E.A., Olley P.M., Newman A.M. (1983) Cancer mortality following cardiac catheterization: a preliminary follow-up study on 4,891 irradiated children, Pediatrics 71, 235-239. [PubMed] [Google Scholar]
  • Stebbings J.H., Lucas H.F., Stehney A.F. (1984) Mortality from cancers of major sites in female radium dial workers, Am. J. Ind. Med. 5, 435-459. [CrossRef] [PubMed] [Google Scholar]
  • Sugahara T., Watanabe M. (1994) Epigenetic nature of radiation cancinogenesis at low doses, Int. J. Occup. Med. Toxicol. 3, 129-136. [Google Scholar]
  • Tanooka H. (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non tumour doses, Int. J. Radiat. Biol. 77, 541-551. [CrossRef] [PubMed] [Google Scholar]
  • Tao Z., Zha Y., Akiba S., Sun Q. et al. (2000) Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995, J. Radiat. Res. (Tokyo) 41, 31-41. [CrossRef] [PubMed] [Google Scholar]
  • Thomas R.G. (1995) “Tumorigenesis in the US radium luminizers: how unsafe was this occupation?”, In Health Effects of Internally Deposited Radionuclides: Emphasis on Radium and Thorium, G. van Kaick, A. Karaoglou, A.M. Kellerer (Eds). World Scientific, London, Singapore, pp. 145-148. [Google Scholar]
  • Travis L.B., Land C.E., Andersson M., Nyberg U. (2001) Mortality after cerebral angiography with or without radioactive Thorotrast: an international cohort of 3, 143 two-year survivors, Radiat. Res. 156, 136-150. [CrossRef] [PubMed] [Google Scholar]
  • Travis L.B., Hauptmann M., Gaul L.K. et al. (2003) Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast, Radiat. Res. 160, 691-706. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M (2003) The carcinogenic effect of low doses: the validity of the linear nothreshold relationship, Int. J. Low Rad. 1, 1-31. [CrossRef] [Google Scholar]
  • Tubiana M., Aurengo A., Averbeck D., Bonnin A., Le Guen B., Masse R., Monier R., Valleron A.J., de Vathaire F. (2005) Académie Nationale de Médecine, Institut de France, Académie des Sciences, Rapport Conjoint n° 2, Relation dose-effet et estimation des risques cancérogènes des faibles doses des rayonnements ionisants (www.academiemedecine.fr/actualites/rapports.asp). Édition Nucleon, Paris, ISBN 2-84332-018-6, pp. 1-168. [Google Scholar]
  • Tubiana M., Aurengo A., Averbeck D., Masse R. (2006a) Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship, Radiat. Environ. Biophys. 44, 245-251. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M., Aurengo A., Averbeck D., Masse R. (2006b) The debate on the use of LNT for assessing the effects of low doses, J. Radiol. Prot. 26, 317-324. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR (1994) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionising radiation, Report to the General Assembly, with Annexes, United Nations, E 94 IX 11, New York. [Google Scholar]
  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionising radiation, Report to the General Assembly, with Annexes, United Nations, New York. [Google Scholar]
  • Van Kaick G., Wesch H., Luhrs H., Lieberman D., Kaul A. (1991) Neoplastic diseases induced by chronic alpha irradiation. Epidemiological, biophysical and clinical results by the German Thoratrast study group, J. Radiat. Res. 32(Suppl 2), 20-33. [Google Scholar]
  • Vilenchik M.M., Knudson A.G. (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates, Proc. Natl. Acad. Sci. USA 97, 5381-5386. [CrossRef] [Google Scholar]
  • Vilenchik M.M., Knudson A.G. (2003) Endogenous DNA double strand breaks: Productio, fidelity of repair, and induction of cancer, Proc. Natl. Acad. Sci. USA 100, 12871-12876. [CrossRef] [Google Scholar]
  • Vilenchik M.M., Knudson A.G. (2006) Radiation dose-rate effects, endogenous DNA damage, and signaling resonance, Proc. Natl. Acad. Sci. USA 103, 17874-17879. [CrossRef] [Google Scholar]
  • Wakeford R., Little M.P. (2003) Risk coefficients for childhood cancer after intrauterine irradiation: a review, Int. J. Radiat. Biol. 79, 293-309. [CrossRef] [PubMed] [Google Scholar]
  • Wang Z.Y., Boice J.D., Wein L.X. (1990) Thyroid nodularity and chromosome aberration among women in areas of high background radiation in China, J. Natl. Cancer Inst. 82, 478-485. [Google Scholar]
  • Wang J.X., Zhang L.A., Li B.X. et al. (2002) Cancer incidence and risk estimation among medical X-ray workers in China 1950-1995, Health Phys. 82, 455-466. [CrossRef] [PubMed] [Google Scholar]
  • Wei L., Sugahara T. (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China, J. Radiat. Res. (Tokyo) 41, 1-7. [CrossRef] [Google Scholar]
  • Yang F., Stenoien D.M., Strittmatter E.F. et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation, J. Proteome Res. 5, 1252-1260. [CrossRef] [PubMed] [Google Scholar]
  • Zeeb H., Blettner M., Langner I. et al. (2003) Mortality from cancer and other causes among airline cabin attentants in Europe: a collaborative study in eight countries, Am. J. Epidemiol. 158, 35-46. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.