Free Access
Volume 40, Number 3, July-September 2005
Page(s) 297 - 306
Published online 14 September 2005
  • Azzam E.I., De Toledo S.M., Spitz D.R., Little J.B. (2002) Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures, Cancer Res. 62, 5436-5442. [PubMed] [Google Scholar]
  • Azzam E.I., De Toledo S.M., Little J.B. (2003) Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect, Oncogene 13, 7050-7057. [CrossRef] [Google Scholar]
  • Balcer-Kubiczek E.K., Harrison G.H., Xu J.F., Gutierrez P.L. (2002) Coordinate late expression of trefoil peptide genes (pS2/TFF1 and ITF/TFF3) in human breast, colon, and gastric tumor cells exposed to X-rays, Mol. Cancer Ther. 6, 405-415. [Google Scholar]
  • Barcellos-Hoff M.H., Brooks A.L. (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability, Radiat. Res. 156, 618-627. [CrossRef] [PubMed] [Google Scholar]
  • Baverstock K. (2000) Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer, Mutat. Res. 254, 89-109. [Google Scholar]
  • Belyakov O.V., Folkard M., Mothersill C., Prise K.M., Michael B.D. (2002) Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation, Radiat. Prot. Dosim. 99, 249-251. [Google Scholar]
  • Belyakov O.V., Folkard M., Mothersill C., Prise K.M., Michael B.D. (2003) A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation, Br. J. Cancer. 88, 767-774. [CrossRef] [PubMed] [Google Scholar]
  • Bishayee A., Hill H.Z., Stein D., Rao D.V., Howell R.W. (2001) Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model, Radiat. Res. 155, 335-44. [CrossRef] [PubMed] [Google Scholar]
  • Burlakova E.B., Mikhailov V.F., Azurik V.K. (2001) The redox homeostasis system in radiation-induced genomic instability, Radiat. Biol. Radioecol. 41, 489-499. [Google Scholar]
  • Calabrese E.J., Baldwin L.A. (2001a) The frequency of U-shaped dose responses in the toxicological literature, Toxicol. Sci. 62, 330-338. [CrossRef] [PubMed] [Google Scholar]
  • Calabrese E.J., Baldwin L.A. (2001b) Hormesis: U-shaped dose responses and their centrality in toxicology, Trends Pharmacol. Sci. 22, 285-291. [CrossRef] [PubMed] [Google Scholar]
  • Calabrese E.J., Baldwin L.A. (2002) Applications of hormesis in toxicology, risk assessment and chemotherapeutics, Trends Pharmacol. Sci. 23, 331-337. [CrossRef] [PubMed] [Google Scholar]
  • Coates P.J., Lorimore S.A., Lindsay K.J., Wright E.G. (2003) Tissue-specific p53 responses to ionizing radiation and their genetic modification: the key to tissue-specific tumour susceptibility?, J. Pathol. 201, 377-388. [CrossRef] [PubMed] [Google Scholar]
  • Coen N., Mothersill C., Kadhim M., Wright E.G. (2001) Heavy metals of relevance to human health induce genomic instability, J. Pathol. 195, 293-299. [CrossRef] [PubMed] [Google Scholar]
  • Davies M.J. (2003) Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun. 305, 61-70. [Google Scholar]
  • Dent P., Yacoub A., Fisher P.B., Hagan M.P., Grant S. (2003) MAPK pathways in radiation responses, Oncogene. 22, 5885-5896. [CrossRef] [PubMed] [Google Scholar]
  • Emerit I., Oganesian N., Arutyunian R., Pogossian A., Sarkisian T., Cernjavski L., Levy A., Feingold J. (1997) Oxidative stress-related clastogenic factors in plasma from Chernobyl liquidators: protective effects of antioxidant plant phenols, vitamins and oligoelements, Mutat. Res. 377, 239-246. [PubMed] [Google Scholar]
  • Erickson A.C., Barcellos-Hoff M.H. (2003) The not-so innocent bystander: the microenvironment as a therapeutic target in cancer, Expert. Opin. Ther. Targ. 7, 71-88 [CrossRef] [Google Scholar]
  • Faguet G.B., Reichard S.M., Welter D.A. (1984) Radiation-induced clastogenic plasma factors, Cancer Genet. Cytogenet. 12, 73-83. [CrossRef] [PubMed] [Google Scholar]
  • Geard C.R., Jenkins-Baker G., Marino S.A., Ponnaiya.B. (2002) Novel approaches with track segment alpha particles and cell co-cultures in studies of bystander effects, Radiat. Prot. Dosim. 99, 233-236. [Google Scholar]
  • Gerashchenko B.I., Howell R.W. (2003) Cell proximity is a prerequisite for the proliferative response of bystander cells co-cultured with cells irradiated with gamma-rays, Cytometry 56A, 71-80. [CrossRef] [Google Scholar]
  • Iyer R., Lehnert B.E. (2002a) Low dose, low-LET ionizing radiation-induced radioadaptation and associated early responses in unirradiated cells, Mutat. Res. 503, 1-9. [PubMed] [Google Scholar]
  • Iyer R., Lehnert B.E. (2002b) Alpha-particle-induced increases in the radioresistance of normal human bystander cells, Radiat. Res. 157, 3-7. [CrossRef] [PubMed] [Google Scholar]
  • Keyes E., Howe O., Seymour C.B., Lyng F., Mothersill C. (2005) Prolonged expression of delayed cell death in the progeny of cells exposed to direct irradiation or to culture medium from irradiated cells, Int. J. Radiat. Biol. (being revised). [Google Scholar]
  • Lehnert B.E., Iyer R. (2002) Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways, Hum. Exp. Toxicol. 21, 65-69. [CrossRef] [PubMed] [Google Scholar]
  • Limoli C.L., Giedzinski E. (2003) Induction of chromosomal instability by chronic oxidative stress, Neoplasia. 5, 339-346. [PubMed] [Google Scholar]
  • Little J.B., Morgan W.F. (Eds.) (2003) Oncogene 13, 69-77. [Google Scholar]
  • Little J.B., Azzam E.I., De Toledo S.M., Nagasawa H. (2002) Bystander effects: intercellular transmission of radiation damage signals, Radiat. Prot. Dosim. 99, 159-162. [Google Scholar]
  • Lorimore S.A, Wright E.G. (2003) Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review, Int. J. Radiat. Biol. 79, 15-25. [PubMed] [Google Scholar]
  • Lorimore S.A., Coates P.J., Scobie G.E., Milne G., Wright E.G. (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects?, Oncogene 20, 7085-7095. [CrossRef] [PubMed] [Google Scholar]
  • Lorimore S.A., Coates P.J., Wright E.G. (2003) Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation, Oncogene 22, 7058-7069. [CrossRef] [PubMed] [Google Scholar]
  • Lyng F.M., Seymour C.B., Mothersill C. (2000) Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis, Br. J. Cancer. 83, 1223-1230. [CrossRef] [PubMed] [Google Scholar]
  • Lyng F.M., Seymour C.B., Mothersill C. (2002a) Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells, Radiat. Prot. Dosim. 99, 169-172. [Google Scholar]
  • Lyng F.M., Seymour C.B., Mothersill C. (2002b) Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability?, Radiat. Res. 157, 365-370. [CrossRef] [Google Scholar]
  • Maguire M., Mothersill C., Seymour C.B., Lyng F.M. (2005) An adaptive response following exposure of cultures to medium from cells irradiated to low doses of cobalt 60 gamma rays, Radiat. Res. (in preparation). [Google Scholar]
  • Morgan W.F. (2003) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro, Rad. Res. 159, 567-580. [CrossRef] [Google Scholar]
  • Mothersill C., Seymour C. (1997a) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells, Int. J. Radiat. Biol. 71, 21-7. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C. (1997b) Survival of human epithelial cells irradiated with cobalt 60 as microcolonies or single cells, Int. J. Radiat. Biol. 72, 597-606. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C.B. (1998) Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium, Radiat. Res. 149, 256-262. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C.B. (2002) Bystander and delayed effects after fractionated radiation exposure, Radiat. Res. 158, 626-633. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C. (2003) Low-dose radiation effects: experimental hematology and the changing paradigm, J. Exp. Haematol. 31, 437-445. [CrossRef] [Google Scholar]
  • Mothersill C., Lyng F., O’reilly S., Harney J., Seymour C.B. (1996) Expression of lethal mutations is suppressed in neoplastically transformed cells and after treatment of normal cells with carcinogens, Radiat. Res. 145, 714-721. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Crean M., Lyons M., Mcsweeney J., Mooney R., O’reilly J., Seymour C.B. (1998) Expression of delayed toxicity and lethal mutations in the progeny of human cells surviving exposure to radiation and other environmental mutagens, Int. J. Radiat. Biol. 74, 673-680. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Stamato T.D., Perez M.L., Cummins R., Mooney R., Seymour C.B. (2000) Involvement of energy metabolism in the production of ‘bystander effects’ by radiation, Br. J. Cancer. 82, 1740-1746. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Rea D., Wright E.G., Lorimore S.A., Murphy D., Seymour C.B., O’malley K. (2001) Individual variation in the production of a ‘bystander signal’ following irradiation of primary cultures of normal human urothelium, Carcinogenesis 22, 1465-1471. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour C.B., Joiner M.C. (2002) Relationship between radiation-induced low-dose hypersensitivity and the bystander effect, Radiat. Res. 157, 526-532. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C., Seymour R.J., Seymour C.B. (2005) Bystander effects in repair deficient cell lines, Radiat. Res. (accepted). [Google Scholar]
  • Nagar S., Smith L.E., Morgan W.F. (2003) Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect, Cancer. Res. 63, 324-328. [PubMed] [Google Scholar]
  • Nagasawa H., Little J.B. (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles, Cancer Res. 52, 6394-6396. [PubMed] [Google Scholar]
  • Nagasawa H., Huo L., Little J.B. (2003) Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells, Int. J. Radiat. Biol. 79, 35-41. [PubMed] [Google Scholar]
  • Osterreicher J., Prise K.M., Michael B.D., Vogt J., Butz T., Tanner J.M. (2003) Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility, Strahlenther Onkol. 179, 69-77. [CrossRef] [PubMed] [Google Scholar]
  • Prise K.M., Belyakov O.V., Folkard M., Michael B.D. (1998) Studies of bystander effects in human fibroblasts using a charged particle microbeam, Int. J. Radiat. Biol. 74, 793-798. [CrossRef] [PubMed] [Google Scholar]
  • Prise K.M., Belyakov O.V., Newman H.C., Patel S., Schettino G., Folkard M., Michael B.D. (2002) Non-targeted effects of radiation: bystander responses in cell and tissue models, Radiat. Prot. Dosim. 99, 223-226. [Google Scholar]
  • Prise K.M., Folkard M., Michael B.D. (2003) A review of the bystander effect and its implications for low-dose exposure, Radiat. Prot. Dosim. 104, 347-355. [Google Scholar]
  • Reznikov K., Kolesnikova L., Pramanik A., Tan-No K., Gileva I., Yakovleva T., Rigler R., Terenius L., Bakalkin G. (2000) Clustering of apoptotic cells via bystander killing by peroxides, FASEB J. 14, 1754-1764. [CrossRef] [PubMed] [Google Scholar]
  • Sawant S.G., Zheng W., Hopkins K.M., Randers-Pehrson G., Lieberman H.B., Hall E.J. (2002) The radiation-induced bystander effect for clonogenic survival, Radiat. Res. 157, 361-364. [CrossRef] [PubMed] [Google Scholar]
  • Seymour C.B., Mothersill C. (2000) Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve, Radiat. Res. 153, 508-511. [CrossRef] [PubMed] [Google Scholar]
  • Seymour C.B., Mothersill C., Mooney R., Moriarty M., Tipton K.F. (2003) Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity, Br. J. Cancer. 89, 1979-1986. [CrossRef] [PubMed] [Google Scholar]
  • Shao C., Furusawa Y., Kobayashi Y., Funayama T., Wada S. (2003) Bystander effect induced by counted high-LET particles in confluent human fibroblasts: a mechanistic study, FASEB J. 17, 1422-1427. [CrossRef] [PubMed] [Google Scholar]
  • Trosko J.E. (1998) Hierarchical and cybernetic nature of biologic systems and their relevance to homeostatic adaptation to low-level exposures to oxidative stress-inducing agents, Environ. Health Perspect. 106 (Suppl. 1), 331-339. [Google Scholar]
  • Zhou H., Randers-Pehrson G., Suzuki M., Waldren C.A., Hei T.K. (2002) Genotoxic damage in non-irradiated cells: contribution from the bystander effect, Radiat. Prot. Dosim. 99, 227-232. [Google Scholar]
  • Zhou H., Randers-Pehrson G., Geard C.R., Brenner D.J., Hall E.J., Hei T.K. (2003) Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells, Radiat. Res. 160, 512-516. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.