Issue |
Radioprotection
Volume 53, Number 1, January-March 2018
|
|
---|---|---|
Page(s) | 61 - 66 | |
DOI | https://doi.org/10.1051/radiopro/2018001 | |
Published online | 05 March 2018 |
Article
Monte Carlo modelling of clinical accelerator beams and estimation of primary electron beam parameters
1
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Dosimetry and Application of Ionizing Radiation,
115 19
Prague, Czech Republic
2
National Radiation Protection Institute,
140 00
Prague, Czech Republic
* Corresponding author: simona.horova@gmail.com
Received:
30
January
2017
Accepted:
1
February
2018
The accuracy of Monte Carlo simulations of clinical photon beams in radiation oncology is dependent on the linac head model accuracy and on parameters of the primary electron beam. While the internal composition and geometry of the accelerator head are known precisely, at least in principle, the energy spectrum and the spatial characteristics of the primary electron beam are unknown and immeasurable. The mean energy and FWHM of the electron beam are commonly estimated by comparing the simulation results with measured dosimetric data. Percentage depth doses (PDDs) and dose profiles are sensitive to changes in the electron beam parameters and are therefore in general used for the comparison. In the published studies which deal with parameter estimation, the determination of electron beam parameters is typically performed through a trial and error process. As to the parameter optimization, there is no unified methodology agreed upon, and the uncertainty of the resulting parameter values is usually not quantified by the authors. The aim of our work was not only to estimate the mean energy and the FWHM of the primary electron beam, but also to determine the confidence region of the optimized values in a defined and repeatable way. A model of Varian Clinac 2100C/D linear accelerator 6 MV photon beam was built in the EGSnrc/BEAMnrc Monte Carlo system. PDDs and dose profiles for different field sizes and different depths were obtained from water phantom measurements. We show that an approach based on a large number of simulations, each with a relatively low number of primary particles, in combination with non-linear regression methods allows to find both the optimized values of the electron beam parameters and their common 95% confidence region.
Key words: Monte Carlo / medical accelerator / photon beams / statistical analysis / absorbed dose
© EDP Sciences 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.