Issue |
Radioprotection
Volume 46, Number 6, 2011
ICRER 2011 – International Conference on Radioecology & Environmental Radioactivity: Environment & Nuclear Renaissance
|
|
---|---|---|
Page(s) | S49 - S54 | |
Section | Getting and Processing Data | |
DOI | https://doi.org/10.1051/radiopro/20116557s | |
Published online | 09 January 2012 |
Application of a “Sealed Can Technique” and CR-39 detectors for measuring radon emanation from undamaged granitic ornamental building materials
Environmental Radiometric Division, Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
Radon (222Rn) is the most important cause of exposure to mankind due to natural radioactivity. Radon exhalation depends not only on the 226Ra concentration in the material, but also on other factors such as mineralogy of the region, size and density of grains and porosity of the material. As building materials are one of the major sources of environmental radon, the radiological implications of the use of materials with great content of uranium must be always assessed. In this work, radon exhalation from several undamaged granitic building materials used as ornamental rocks or coating tiles is determined using the “sealed-can technique” and CR-39 solid state nuclear track detectors (SSNTD). Preliminary results for radon concentrations showed values of the same order that literature values, in a range from 99 Bq.m−3 to 1100 Bq m−3. Further, the methodology will be validated with standard sources of 222Rn.
© Owned by the authors, published by EDP Sciences, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.