Issue
Radioprotection
Volume 57, Number 1, January-March 2022
Page(s) 41 - 48
DOI https://doi.org/10.1051/radiopro/2021031
Published online 10 November 2021
  • AAPM. 2017. American Association of Physicists in Medicine (AAPM) position statement on the use of Bi shielding for the purpose of dose reduction in CT scanning. https://www.aapm.org/org/policies/details.asp?id=319&type=PP&current=true. [Google Scholar]
  • AAPM. 2019. American Association of Physicists in Medicine (AAPM) position statement on the use of patient gonadal and fetal shielding. Policy Statement PP-32A. American Association of Physicists in Medicine. https://www.aapm.org/org/policies/details.asp?id=468. [Google Scholar]
  • Alonso TC, Mourão AP, Santana PC, da Silva TA. 2016. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of Bi shielding. Appl. Radiat. Isotopes 117: 55–57. [CrossRef] [Google Scholar]
  • Blanc M, Nessi R, Paruccini N, Castellana L. 1995. Dosimetric evaluations in dental radiology: Comparison of the digital system and the conventional system. Radiol. Med. 89(3): 319–323. [Google Scholar]
  • Chang LA, Miller DL, Lee C, Melo DR, Villoing D, Drozdovitch V, Thierry-Chef I, Winters SJ, Labrake M, Myers CF. 2017. Thyroid radiation dose to patients from diagnostic radiology procedures over eight decades: 1930–2010. Health Phys. 113(6): 458. [CrossRef] [PubMed] [Google Scholar]
  • Christodoulou EG, Goodsitt MM, Larson SC, Darner KL, Satti J, Chan HP. 2003. Evaluation of the transmitted exposure through lead equivalent aprons used in a radiology department, including the contribution from backscatter. Med. Phys. 30(6): 1033–1038. [CrossRef] [Google Scholar]
  • Cohnen M, Kemper J, Möbes O, Pawelzik J, Mödder U. 2002. Radiation dose in dental radiology. Eur. Radiol. 12(3): 634–637. [CrossRef] [PubMed] [Google Scholar]
  • Crawley M, Savage P, Oakley F. 2004. Patient and operator dose during fluoroscopic examination of swallow mechanism. Br. J. Radiol. 77(920): 654–656. [CrossRef] [PubMed] [Google Scholar]
  • Dixon MT, Loader RJ, Stevens GC, Rowles NP. 2016. An evaluation of organ dose modulation on a GE optima CT660-computed tomography scanner. J. Appl. Clin. Med. Phys. 17(3): 380–391. [CrossRef] [Google Scholar]
  • Efstathopoulos EP, Makrygiannis SS, Kottou S, Karvouni E, Giazitzoglou E, Korovesis S, Tzanalaridou E, Raptou PD, Katritsis DG. 2003. Medical personnel and patient dosimetry during coronary angiography and intervention. Phys. Med. Biol. 48(18): 3059. [CrossRef] [PubMed] [Google Scholar]
  • Einstein AJ, Elliston CD, Groves DW, Cheng B, Wolff SD, Pearson GD, Peters MR, Johnson LL, Bokhari S, Johnson GW. 2012. Effect of Bi breast shielding on radiation dose and image quality in coronary CT angiography. J. Nucl. Cardiol. 19(1): 100–108. [CrossRef] [PubMed] [Google Scholar]
  • Fricke BL, Donnelly LF, Frush DP, Yoshizumi T, Varchena V, Poe SA, Lucaya J. 2003. In-plane Bi breast shields for pediatric CT: Effects on radiation dose and image quality using experimental and clinical data. Am. J. Roentgenol. 180(2): 407–411. [CrossRef] [PubMed] [Google Scholar]
  • Ge H. 2011. Optima brochure. http://www3.gehealthcare.ru/ru-RU/Products/Categories/∼/media/Downloads/uk/Product/Computed-Tomography/Veo/1%20-%20Optima%20CT660%20SE.pdf [Retrieved April 2014]. [Google Scholar]
  • Ge H. 2013. Optima CT660 CT system technical reference manual: 5478702. [Google Scholar]
  • Gori CF. 2000. Radiation dose in pediatric patients using pulsed fluoroscopy. AJR Am. J. Roentgenol. 167(5): 1247–1253. [Google Scholar]
  • Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, Mont L. 2014. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace 16(7): 946–964. [CrossRef] [PubMed] [Google Scholar]
  • Hoang JK, Yoshizumi TT, Choudhury KR, Nguyen GB, Toncheva G, Gafton AR, Eastwood JD, Lowry C, Hurwitz LM. 2012. Organ-based dose current modulation and thyroid shields: Techniques of radiation dose reduction for neck CT. Am. J. Roentgenol. 198(5): 1132–1138. [CrossRef] [PubMed] [Google Scholar]
  • Hohl C, Wildberger J, Süß C, Thomas C, Mühlenbruch G, Schmidt T, Honnef D, Günther R, Mahnken A. 2006. Radiation dose reduction to breast and thyroid during MDCT: Effectiveness of an in-plane Bi shield. Acta Radiol. 47(6): 562–567. [CrossRef] [PubMed] [Google Scholar]
  • Hoogeveen RC, Hazenoot B, Sanderink GC, Berkhout WER. 2016. The value of thyroid shielding in intraoral radiography. Dentomaxillofac. Radiol. 45(5): 20150407. [CrossRef] [PubMed] [Google Scholar]
  • Hopper KD. 2002. Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. In: Seminars in Ultrasound, CT and MRI, Elsevier. [Google Scholar]
  • Hopper KD, King SH, Lobell M, TenHave T, Weaver J. 1997. The breast: In-plane X-ray protection during diagnostic thoracic CT-shielding with Bi radioprotective garments. Radiology 205(3): 853–858. [CrossRef] [PubMed] [Google Scholar]
  • Hopper KD, Neuman JD, King SH, Kunselman AR. 2001. Radioprotection to the eye during CT scanning. Am. J. Neuroradiol. 22(6): 1194–1198. [Google Scholar]
  • IAEA. 2010. Patient dose optimization in fluoroscopically guided interventional procedures. International Atomic Energy Agency. [Google Scholar]
  • Iball G, Brettle D. 2011. Organ and effective dose reduction in adult chest CT using abdominal lead shielding. Br. J. Radiol. 84(1007): 1020–1026. [CrossRef] [PubMed] [Google Scholar]
  • IEC. 2014. International Electrotechnical Commission (IEC) 61331-3. [Google Scholar]
  • Iversen K, Vach W. 2020. Guidance on using shielding on patients for diagnostic. [Google Scholar]
  • Jain C. 2019. ACOG Committee Opinion No. 723: Guidelines for diagnostic imaging during pregnancy and lactation. Obstet. Gynecol. 133(1): 186. [CrossRef] [PubMed] [Google Scholar]
  • Karimi E, Amoozgar H. 2020. Effective dose of radiation in diagnostic and interventional cardiac angiography among pediatrics and adolescents in Hospitals of Shiraz University of Medical Sciences versus other radiology devices. ISMJ 23(1): 27–35. [Google Scholar]
  • Kastrati M, Langenbrink L, Piatkowski M, Michaelsen J, Reimann D, Hoffmann R. 2016. Reducing radiation dose in coronary angiography and angioplasty using image noise reduction technology. Am. J. Cardiol. 118(3): 353–356. [CrossRef] [Google Scholar]
  • Kesari KK, Agarwal A, Henkel R. 2018. Radiations and male fertility. Reproduct. Biol. Endocrinol. 16(1): 1–16. [CrossRef] [Google Scholar]
  • Khong P, Ringertz H, Donoghue V, Frush D, Rehani M, Appelgate K, Sanchez R. 2013. ICRP Publication 121: Radiological protection in paediatric diagnostic and interventional radiology. Ann. ICRP 42(2): 1–63. [CrossRef] [PubMed] [Google Scholar]
  • Lambert JW, Gould RG. 2016. Evaluation of a net dose-reducing organ-based tube current modulation technique: comparison with standard dose and Bi-shielded acquisitions. Am. J. Roentgenol. 206(6): 1233–1240. [CrossRef] [PubMed] [Google Scholar]
  • Lederman HM, Khademian ZP, Felice M, Hurh PJ. 2002. Dose reduction fluoroscopy in pediatrics. Pediatr. Radiol. 32(12): 844–848. [CrossRef] [PubMed] [Google Scholar]
  • Livingstone RS, Varghese A, Keshava SN. 2018. A study on the use of radiation-protective apron among interventionists in radiology. J. Clin. Imaging Sci. 8. [Google Scholar]
  • Lu H, Boyd C, Dawson J. 2019. Lightweight lead aprons: The Emperor’s new clothes in the angiography suite? Eur. J. Vasc. Endovasc. Surg. 57(5): 730–739. [CrossRef] [Google Scholar]
  • Mahesh M. 2001. Fluoroscopy: Patient radiation exposure issues. Radiographics 21(4): 1033–1045. [CrossRef] [PubMed] [Google Scholar]
  • Miller DL, Hilohi CM, Spelic DC. 2012. Patient radiation doses in interventional cardiology in the US: Advisory data sets and possible initial values for US reference levels. Med. Phys. 39(10): 6276–6286. [CrossRef] [Google Scholar]
  • Morrish O, Goldstone K. 2008. An investigation into patient and staff doses from X-ray angiography during coronary interventional procedures. Br. J. Radiol. 81(961): 35–45. [CrossRef] [PubMed] [Google Scholar]
  • Nakamura S, Kobayashi T, Funatsu A, Okada T, Mauti M, Waizumi Y, Yamada S. 2016. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention. Heart and Vessels 31(5): 655–663. [CrossRef] [PubMed] [Google Scholar]
  • NCRP. 2003. National Council on Radiological Protection (NCRP) Report No. 145, radiation protection in dentistry. Bethesda, MD: National Council on Radiological Protection and Measurement. [Google Scholar]
  • Neofotistou V. 2001. Review of patient dosimetry in cardiology. Radiat. Protect. Dosim. 94(1-2): 177–182. [CrossRef] [PubMed] [Google Scholar]
  • Ng K, Rassiah P, Wang H, Hambali A, Muthuvellu P, Lee H. 1998. Doses to patients in routine X-ray examinations in Malaysia. Br. J. Radiol. 71(846): 654–660. [CrossRef] [PubMed] [Google Scholar]
  • Parry RA, Glaze SA, Archer BR. 1999. The AAPM/RSNA physics tutorial for residents: Typical patient radiation doses in diagnostic radiology. Radiographics 19(5): 1289–1302. [CrossRef] [PubMed] [Google Scholar]
  • Saba V, Keshtkar M. 2019. Targeted radiation energy modulation using Saba shielding reduces breast dose without degrading image quality during thoracic CT examinations. Phys. Med. 65: 238–246. [CrossRef] [Google Scholar]
  • Saba JKS, Valizadeh A, Zahedinia M, Barkhordari M. 2020. Reducing absorbed dose to thyroid in neck ct examinations: The effects of saba shielding. Radiat. Protect. Dosim. [Google Scholar]
  • Schauer DA, Linton OW. 2009. National Council on Radiation Protection and Measurements report shows substantial medical exposure increase. Radiological Society of North America, Inc. [Google Scholar]
  • Siemens H. 2014. Siemens Healthcare X-Care. https://www.healthcare.siemens.co.uk/computed-tomography/options-upgrades/clinical-applications/x-care [Retrieved April, 2014]. [Google Scholar]
  • Souza EM, Lima MA, Kelecom A, Correa SC, Silva AX, Brito A. 2008. Dose and risk evaluation to the thyroid gland in intra-oral dental radiology. [Google Scholar]
  • Stephens K. 2021. NCRP recommends against routine gonadal shielding. AXIS Imaging News. [Google Scholar]
  • Tappouni R, Mathers B. 2012. Scan quality and entrance skin dose in thoracic CT: A comparison between Bi breast shield and posteriorly centered partial CT scans. ISRN Radiology 2013. [Google Scholar]
  • Valentin J. 2008. The 2007 Recommendations of the International Commission on Radiological Protection. Elsevier. [Google Scholar]
  • Van der Stelt P. 1996. Radiation protection and quality assurance in dental radiography. A treatise from the European Community. Rev. Belge Med. Dent. 51(2): 111. [Google Scholar]
  • Wambani JS, Korir GK, Tries MA, Korir IK, Sakwa JM. 2014. Patient radiation exposure during general fluoroscopy examinations. J. Appl. Clin. Med. Phys. 15(2): 262–270. [CrossRef] [Google Scholar]
  • Wang J, Duan X, Christner JA, Leng S, Yu L, McCollough CH. 2011. Radiation dose reduction to the breast in thoracic CT: Comparison of Bi shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med. Phys. 38(11): 6084–6092. [CrossRef] [Google Scholar]
  • Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH. 2012. Bi shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 262(1): 191–198. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.