Issue
Radioprotection
Volume 56, Number 4, October - December 2021
Page(s) 327 - 336
DOI https://doi.org/10.1051/radiopro/2021020
Published online 14 July 2021
  • Abu-Jarad F, Fremlin JH, Bull R. 1980. A study of radon emitted from building materials using plastic alpha-track detectors. Phys. Med. Biol. 25: 683–694. [Google Scholar]
  • Aldenkamp FJ, De Meijer RJ, Put LW, Stoop P. 1992. An assessment of in situ radon exhalation measurement, and the relation between free and bound exhalation rates. Radiat. Prot. Dosim. 45: 449–453. [Google Scholar]
  • Altic N. 2011. Technical bases and guidance for radon flux monitoring at uranium mill tailing sites. [online] Rockville, MD.: Oak Ridge Institute for Science and Education. Available from https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML11186A899 [Accessed 18 Sep. 2014]. [Google Scholar]
  • Altic N. 2014. Pilot study report for radon exhalation measurements at Oak Ridge. [online] Oak Ridge, Tennessee: Oak Ridge Institute for Science and Education. Available from https://www.nrc.gov/docs/ML1414/ML14141A242.pdf [Accessed 19 Sep. 2014]. [Google Scholar]
  • Amin RM. 2015. A study of radon emitted from building materials using solid-state nuclear track detectors. J. Radiat. Res. Appl. Sci. 8(4): 516–522. [Google Scholar]
  • Azam A, Naqvi AH, Srivastava DS. 1995. Radium concentration and radon exhalation measurements using LR-115 type II plastic track detectors. Nucl. Geophys. 9(6): 653–657. [Google Scholar]
  • Botha MA. 2007. Resrad modelling of environmental risk-values for rehabilitated gold-tailings dams. M Tech: Environmental Management ed. Tshwane University of Technology. Available from http://tutvital.tut.ac.za:8080/vital/access/manager/Repository/tut:3903. [Google Scholar]
  • Chen CJ, Weng PS, Chu TC. 1993. Radon exhalation rate from various building materials. Health Phys. 64: 613–619. [Google Scholar]
  • Cooper JR. 2012. Radiation protection principles. J. Radiol. Prot. 32(1): N81–N88. [Google Scholar]
  • Ellis JF. 1998. The assessment of potential radiation hazards from gold mines in the Free State Goldfields to members of the public. M. Med.Sc. ed. University of the Orange Free State. Available from https://scholar.ufs.ac.za/handle/11660/7401. [Google Scholar]
  • Ferry C, Richon P, Beneito A, Robé MC. 2002. Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis. J. Environ. Radioact. 63(1): 49–64. https://doi.org/10.1016/s0265-931x(02)00015-2. PMID: 12230135. [Google Scholar]
  • Guan C, Jianping C, Guo Q. 2006. Discussion of influencing factors on the radon exhalation rate and theoretical model. Chin. J. Radiol. Med. Protect. 26(5): 520–524. [Google Scholar]
  • Guo Q, Sun K, Cheng J. 2004. Methodology study on evaluation of radon flux from soil in China. Radiat. Prot. Dosim. 112(2): 291–296. [Google Scholar]
  • Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sahoo SK, Tokonami S, Fukushi M. 2009. Radon migration process and its influence factors: Review. Jpn. J. Health Phys. 44(2): 219–231. [Google Scholar]
  • IAEA. 1992. Measurement and calculation of radon releases from uranium mill tailings. Technical Reports Series No333. Vienna: International Atomic Energy Agency. [Google Scholar]
  • IAEA. 2013. Measurement and calculation of radon releases from NORM residues. Technical Reports Series No474. [online] Vienna: International Atomic Energy Agency. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/trs474_webfile.pdf [Accessed 19 Sep. 2014]. [Google Scholar]
  • ICRP. 2010. Lung cancer risk from radon and progeny and statement on radon. Ann. ICRP 40(1): 1–64. [Google Scholar]
  • International Agency for Research on Cancer. 1988. Man-made mineral fibres and radon. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 43, 308 p. [Google Scholar]
  • Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M. 2013. Measurement and calculation of radon releases from NORM residues. Technical Reports Series No474. [online] Vienna: International Atomic Energy Agency. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/trs474_webfile.pdf [Accessed 19 Sep. 2014]. [Google Scholar]
  • Jiránek M, Fronka A. 2008. New technique for the determination of radon diffusion coefficient in radon proof membranes. Radiat. Prot. Dosim. 130: 22–25. [Google Scholar]
  • Lawrence CE, Akber RA, Bollhöfer A, Martin P. 2009. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics. J. Environ. Radioact. 100(1): 1–8. [Google Scholar]
  • Lindsay R, de Meijer RJ, Maleka PP, Newman RT, Motlhabane TGK, de Villiers D. 2004. Monitoring the radon flux from gold-mine dumps by γ-ray mapping. Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Interact. Mater. Atoms 213(0): 775–778. [Google Scholar]
  • Lindsay R, Newman RT, Speelman WJ. 2008 A study of airborne radon levels in Paarl houses (South Africa) and associated source terms, using electrets ion chambers and gamma-ray spectrometry. Appl. Radiat. Isot. 66(11): 1611–1614. [Google Scholar]
  • Miller CA, Howarth CB. 2020. Results of the 2018 PHE intercomparison of passive radon detectors. Report No PHE-CRCE-058. [online] Public Health England. Available from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/876956/PHE-CRCE-058_Rn_intercomparison_2018.pdf [Accessed 21 Jan. 2021]. [Google Scholar]
  • Moed BA, Nazaroff WW, Sextro RG. 1988. Soil as a source of indoor radon: Generation, migration and entry. In: Radon and its decay products in indoor air (W.W. Nazaroff, A.V. Nero Jr., eds). New York: John Wiley and Sons, pp. 57–112. [Google Scholar]
  • Moshupya P, Abiye T, Mouri H, Levin M, Strauss M, Strydom R. 2019. Assessment of radon concentration and impact on human health in a region dominated by abandoned gold mine tailings dams: A case from the West Rand Region, South Africa. Geosciences 9(11): 466. https://doi.org/10.3390/geosciences9110466. [Google Scholar]
  • Mudd GM. 2008. Radon releases from Australian uranium mining and milling projects: Assessing the UNSCEAR approach. J. Environ. Radioact. 99(2): 288–315. [Google Scholar]
  • Nazaroff WW, Nero AV. 1988. Radon and its decay products in indoor air. New York: John Wiley and Sons. [Google Scholar]
  • Nuclear Energy Agency. 1982. Long-term radiological aspects of management of wastes from uranium mining and milling. In:International Symposium on Management of Wastes from Uranium Mining and Milling. [online] Paris: Organisation for Economic Co-operation and Development. Available from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/14/784/14784138.pdf [Accessed 15 Mar. 2016]. [Google Scholar]
  • Ongori JN, Lindsay R, Newman RT, Maleka PP. 2015. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation. J. Environ. Radioact. 140(0): 16–24. [Google Scholar]
  • Porstendörfer J. 1994. Properties and behaviour of radon and thoron and their decay products in the air. J. Aerosol Sci. 25(2): 219–263. [Google Scholar]
  • Prasad Y, Prasad G, Gusain GS, Choubey VM, Ramola RC. 2008. Radon exhalation rate from soil samples of South Kumaun Lesser Himalayas, India. Radiat. Meas. 43: S369–S374. [Google Scholar]
  • Quindos Poncela LS, Fernandez PL, Arozamena JG, Fernandez CS. 2005. A method for measuring active radon diffusion coefficients in radon barriers by using modified Lucas cells. Radiat. Meas. 39: 87–89. [Google Scholar]
  • Ramola RC, Choubey VM. 2004. Measurement of radon exhalation rate from soil samples of Garhwali Himalaya. J. Radioanal. Nucl. Chem. 256: 219–233. [Google Scholar]
  • Rogers VC, Nielson KK. 1981. A complete description of radon diffusion in earthen materials. In: Proceedings of the 4th symposium on uranium mill tailings management, October 26–27, 1981, Colorado State University, Fort Collins, Colorado, USA, 247 p. Geotechnical Engineering Program. [Google Scholar]
  • Rogers VC, Overmyer RF, Putzig KM, Jensen CM, Nielson KK, Sermon BW. 1980. Characterization of uranium tailings cover materials for radon flux reduction. Report No NUREG/CR-1081 FBDU-218-2. [online] Argonne National Laboratory. Available from https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML102430419. [Google Scholar]
  • Sahoo BK, Mayya YS, Sapra BK, Gaware JJ, Banerjee KS, Kushwaha HS. 2010. Radon exhalation studies in an Indian uranium tailings pile. Radiat. Measure. 45(2): 237–241. [Google Scholar]
  • Samuelsson C. 1990. The closed-can exhalation method for measuring radon. J. Res. Natl. Inst. Stand. Technol. 95(2): 167. [Google Scholar]
  • Samuelsson C, Pettersson H. 1984. Exhalation of 222Rn from porous materials. Radiat. Prot. Dosim. 7: 95–100. [Google Scholar]
  • Sasaki T, Gunji Y, Okuda T. 2006. Transient diffusion measurement of radon in Japanese soils from a mathematical viewpoint. J. Nucl. Sci. Technol. 43: 806–810. [Google Scholar]
  • Singh B, Virk HS. 1996. Effect of soil and sand moisture content on radon diffusion plastic track etched detector. Radiat. Meas. 26: 49–50. [Google Scholar]
  • Solecki AT, Tchorz-Trzeciakiewicz DE. 2011. Radon exhalation from the Upper Silesian coal ashes. Geochem. J. 45: 491–496. [Google Scholar]
  • Somogyi G, Hafez AH, Hunyadi I, Szilagly MT. 1986. Measurement of exhalation and diffusion parameters of radon in solids by plastic tracks detector. Nucl. Tracks. Radiat. Meas. 12(1-6): 701–704. [Google Scholar]
  • Speelman WJ, Lindsay R, Newman RT, Meijer RJ de. 2006. Radon generation and transport in and around a gold mine tailings dam in South Africa. France. Available from https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/096/38096828.pdf. [Google Scholar]
  • Tomasek L, Rogel A, Tirmarche M, Mitton N, Laurier D. 2008. Lung cancer in French and Czech uranium miners: Radon-associated risk at low exposure rates and modifying effects of time since exposure and age at exposure. Radiat. Res. 169(2): 125–137. [Google Scholar]
  • UNSCEAR. 1998. Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York. [Google Scholar]
  • UNSCEAR. 2000. Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York. [Google Scholar]
  • UNSCEAR. 2008. Sources and effects and risks of ionizing radiation. Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York. [Google Scholar]
  • Watson SJ, Jones AL, Oatway WB, Hughes JS. 2005. Ionising radiation exposure of the UK population: Review. Report no HPA-RPD-001. Oxfordshire: Public Health England. [Online]. Available from https://www.gov.uk/government/publications/ionising-radiation-exposure-of-the-uk-population-2005-review. [Google Scholar]
  • Winde F, Sandham LA. 2004. Uranium pollution of South African streams – An overview of the situation in gold mining areas of the Witwatersrand. GeoJournal 61(2): 131–149. [Google Scholar]
  • Wronkiewicz DJ, Condie KC. 1990. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic. Geochim. Cosmochim. Acta 54: 343–354. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.