Determination of carbon spices formed by decomposition of acetate in Japanese paddy soil

N. Ishii, H. Koiso and S. Uchida

Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba-shi, Chiba 263-8555, Japan

Abstract. For appropriate safety assessment of TRU waste disposal, the dominant chemical species of 14C-gas was studied. [1,2-14C] sodium acetate was added to flooded paddy soil samples, and the content of 14C in the soil, solution, and the emitted CO2 gas during incubation period was determined. Recovery ratios of the total 14C activity to the initial 14C activity were 97.9% at day 1, 86.4% at day 3, and 83.5% at day 7 of incubation. The result of the day 1 means that the emitted 14C-gas was almost 14CO2. At day 7 of incubation, about 16.5% of 14C was failed to recover. Even if the unknown 14C was gases other than 14CO2, the dominant chemical species of the emitted 14C-gas will be 14CO2, because the recovery ratio of the 14CO2 was 48.9% (>16.5%). Sodium 2-bromoethane-sulfonate was used to ensure the emission of CH4, but there was no effect of the regent to the recovery ratio of 14CO2. Methane emission may be little under our experimental conditions. These results suggest that the dominant chemical species of the emitted 14C-gas from the flooded paddy soil samples was 14CO2.

1. INTRODUCTION

Transuranic (TRU) waste containing radionuclides is generated during the operation and dismantling of reprocessing facilities and mixed oxide (MOX) fuel fabrication facilities. In Japan, TRU waste for geological disposal is separated into four groups in accordance with physical properties and the concentration of radioactive materials. Group 2 waste among these four groups includes hull and end piece wastes, which are comprised of the debris and residue from the shearing and dissolution of the spent fuel assemblies. The key nuclide in a geological repository for Group 2 waste is 14C, and leaching of organic 14C compounds from simulated hull wastes has been reported [1]. Because 14C is long-lived and has very little sorption properties, the possible migration of 14C from a TRU repository site to the biosphere through groundwater presents some concern. Therefore, it is necessary to understand the behavior of 14C in the human habitation sphere on the assumption the 14C derived from TRU wastes.

Rice paddy field is an important place to assess the behavior of 14C because rice has long been a staple food in the Japanese diet and people may be expose to 14C through rice intake. Radioactive tracer experiments with [1,2-14C] sodium acetate showed that more than 65% of the spiked 14C was released from paddy soil samples into the air as gas forms [2]. Rice plants may assimilate the released 14C depending on chemical species. The chemical species of the released 14C, however, have not been identified yet. This paper will show the dominant chemical species of 14C in gas phase, which was formed by decomposition of acetate by microorganisms in the paddy soil.

2. MATERIALS AND METHODS

2.1 Soil sample

Paddy soil (Fluvisol) was collected in Shimane prefecture, Japan. The soil sample was air-dried, homogenized, sieved (< 2 mm), and stored in a polypropylene bottle at room temperature until needed. Soil properties were listed in Table 1.
Table 1. Soil properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse sand (%)</td>
<td>63</td>
</tr>
<tr>
<td>Fine sand (%)</td>
<td>12</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>75</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>12</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>14</td>
</tr>
<tr>
<td>Carbon content (g/kg)</td>
<td>16.2</td>
</tr>
<tr>
<td>Nitrogen content (g/kg)</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Figure 1. Schematic illustration of experimental apparatus.

2.2 Radioactive tracer experiments

The soil sample was contacted with deionized water in a 30 mL glass vial at a solid-liquid ratio of 0.5 g to 5 mL. The vial sample was spiked with [1, 2-14C] sodium acetate and was sealed with a butyl rubber. Emission of methane during experimental periods was determined by the presence and absence of sodium 2-bromoethane-sulfonate at a final concentration of 10 mM.

The vial sample was incubated with no shake at 25°C in the dark. The 14C content in solid, liquid, and CO2 gas phases of the vial sample was determined at the end of incubation. Incubation periods were 1 day, 3 days and 7 days. To determine the 14C content in the solid soil phase, the soil in the vial sample was trapped by filtration on a GF/F filter. About 15 mg of the soil was collected into Combusto-Cone (PerkinElmer, Yokohama, Japan), and it was combusted in 307 Packard sample oxidizer for scintillation counting. The liquid phase of the vial sample was obtained by filtration through a 0.2 μm cellulose acetate filter and then counted for radioactivity in a liquid scintillation counter. A schematic illustration of experimental apparatus for 14CO2 recovery is shown in Figure 1. A head-space gas sample was flushed with N2 gas at a rate of 50 mL min⁻¹ for 20 min. CO2 gas in the head-space gas sample was trapped by triple sequential traps through Carbo-Sorb E (PerkinElmer, Yokohama, Japan), and the activities of 14C were measured with a Tri-Carb-25WTR Liquid Scintillation Analyzer (Packard, Tokyo, Japan). All the experiments were carried out in triplicate.

3. RESULTS AND DISCUSSION

3.1 Dominant chemical species of 14C gas

Figure 2 shows the recovery ratios of 14C at the end of incubation. The recovery ratio at the day 1 of incubation was 97.9 ± 2.5%. This result means that the chemical species of the released gas from the vial sample was carbon dioxide. The unrecovered 14C was increased with incubation periods. However, even the lower recovery ratio at the day 7 of incubation was 83.5 ± 10.6%. That is, about 16.5% of 14C was failed to recover. Because the recovery ratio of the 14CO2 was 48.9 ± 11.9%, the dominant chemical
species of the released gas would be carbon dioxide if 16.5% of 14C were a chemical species other than carbon dioxide. Carbon dioxide can diffuse into the plant leaf through the stomata. The behavior of 14CO$_2$ in paddy fields must be attention.

3.2 Generation of methane

Paddy fields are a source of methane emission [3], and thus generation of methane gas under our experimental conditions were determined. At the day 7 of incubation, effects of sodium 2-bromoethane-sulfonate, which is a specific inhibitor of methanogens, were investigated (Fig. 3). No differences were observed for 14CO$_2$ emission between the presence and absence of that reagent (t-test, $P > 0.05$), suggesting little methane emission during the experimental periods. 16.5% of 14C which was failed to recover at the day 7 of incubation may contain 14C-gases other than CO$_2$ and CH$_4$. These 14C-gases other than 14CO$_2$ be diluted and dispersed in the atmosphere.
4. CONCLUSION

Dominant chemical species of 14C containing gas, which derived from [1, 2-14C] sodium acetate, were determined. The following conclusions were drawn in the present study.

1. Dominant chemical species of 14C containing gas is carbon dioxide.
2. The content of the 14C-gases other than 14CO$_2$ may increase with incubation time.
3. Methane emission is little under our experimental conditions.

The 14CO$_2$ emitted from paddy fields will be assimilated by rice plants through photosynthesis. Rice straw will plow back next year, and thus the assimilated 14C may be recycled in paddy ecosystem. It should be very careful to clarify 14C cycles in paddy ecosystem for the safety of geological disposal of TRU waste.

Acknowledgments

This work has been supported by the Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry (METI) Japan.

References